Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhijestfijteryijryihrjgi
huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh
Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)
\(\Leftrightarrow a+b\le1\)
Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2
ta có : a2< = b =>( a2)4<= b4=> a8<=b4
b2<=c=> (b2)2<=c2=> b4<=c2
c2<=a
=> a8<=b4<=c2<=a
=> a8<=a
=>a8=a => a8=b4=c4=a
=> a8-a=8
=> a.(a7-1)=0
=> a=0 = > b4=c2=1=> b=c=1 => a=b=c=1
hoặc : a7-1=0=>a7=1 => a=1=> b4=c2=0 => b=c=0 => a=b=c=0
Vậy : a=b=c=1 hoặc a=b=c=0
bạn đang đùa mình sao????
Trong bài làm của bạn sai nhiều chỗ nhưng mình hiểu
Ta có: a\(\le\)b
<=>a2\(\le\)b2
<=>a2c\(\le\)b2c
<=>a2c+a\(\le\)b2c+b
<=>a(ac+1)\(\le\)b(bc+1)(1)
ac+1 >0 bc+1>0
=>(1)<=>\(\dfrac{a}{bc+1}\le\dfrac{b}{ac+1}\)
Dấu "=" xảy ra khi và chỉ khi a=b
C/m tương tự ta có:\(\dfrac{b}{ac+1}\le\dfrac{c}{ab+1}\)
Dấu "=" xảy ra khi và chỉ khi b=c
=>\(\dfrac{a}{bc+1}\le\dfrac{b}{ac+1}\le\dfrac{c}{ab+1}\)
Dấu = xảy ra khi và chỉ khi a=b=c
Lại có:ab+1\(\ge\)1
\(0\le c\le1\)
=>\(\dfrac{c}{ab+1}< 1\)
=>\(\dfrac{c}{ab+1}\le2\)(bé hơn hoặc bằng chỉ cần bé hơn là thõa mãn nhé)
Từ đó ta có:\(\dfrac{a}{bc+1}\le\dfrac{b}{ac+1}\le\dfrac{c}{ab+1}\le2\)