Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+3}\)
\(\Leftrightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+3}\)
\(\Leftrightarrow\frac{2a-7}{14}=\frac{1}{b+3}\)
\(\Rightarrow\left(2a-7\right)\left(b+3\right)=14\)
=> 2a - 7 và b + 3 là ước của 14
=> Ư(14) = { - 14; - 1; 1; 14 }
Vì 2a - 7 là số nguyên lẻ => 2a - 7 = { - 1; 1 }
+ ) Với 2a - 7 = - 1 thì b + 3 = - 14 => a = 3 thì b = - 17
+ ) Với 2a - 7 = 1 thì b + 3 = 14 => a = 4 thì b = 11
Vậy ( a;b ) = { ( 3;-17 ); ( 4;11 ) }
Quy đồng
\(\frac{2a-7}{14}=\frac{1}{b+1}\)
suy ra: 1 là ước của 2a-7 (hihi huề vốn)
và b+1 là ước cùa 14
U(14)={1,2,7,14}
Cho b+1=1 suy ra b=0 thay vào a=21/2=10,5 (loại bỏ)
Cho b+1=2 suy ra b=1 thay vào a=7 (lấy nhe)
Cho b+1=7 suy ra b=6 thay vào a=9/2=4,5 (loại bỏ)
Cho b+1=14 suy ra b=13 thay vào a=7/2=3,5 (loại bỏ)
Vậy là sau thời gian mài mò chúng ta được a=7, b=1 là số nguyên thôi, trường hợp còn lại là số bị mẻ nên bỏ kakaka
ta co :\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\Rightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+1}\)
\(\left(2a-7\right).\left(b+1\right)=14\)
lập bảng rồi tự tìm a, b nhé !
a)\(\frac{x-1}{-3}=\frac{4}{7}\)
\(\Leftrightarrow7x-7=-12\)
\(\Leftrightarrow7x=-12+7\)
\(\Leftrightarrow7x=-5\)
\(\Leftrightarrow x=\frac{-5}{7}\)
vì \(x\in Z\Rightarrow x\in\left\{\varnothing\right\}\)
b) \(\frac{2}{3}=\frac{y+1}{-9}\)
\(\Leftrightarrow3y+3=-18\)
\(\Leftrightarrow3y=-18-3\)
\(\Leftrightarrow3y=-21\)
\(\Leftrightarrow y=-7\)
hok tốt!!
Ta có;\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\Leftrightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+1}\Leftrightarrow\frac{2a-7}{14}=\frac{1}{b+1}\)
\(\Leftrightarrow\left(2a-7\right)\left(b+1\right)=14\)
rồi lập bảng là tìm được a và b
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{3}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{2}{3}\)
<=> \(\frac{2}{ab}=\frac{2}{3}\)
<=> ab = 3
Nên : a,b thuộc Ư(3) = {1;3}
Mà b - a = 2
Vậy a = 1 thì b = 3
\(\frac{a}{7}=\frac{1}{b+3}+\frac{1}{2}=\frac{2+b+3}{2b+6}=\frac{b+5}{2b+6}\)
\(\Rightarrow a=\frac{7b+35}{2b+6}\)