Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 mk giải luôn nhé
f(x)=x^2+4x-5=x^2-x+5x-5
=x(x-1)+5(x-1)
=(x+5)(x-1)
Vậy x=-5 hoặc x=1 là nghiệm của đa thức f(x)
Giải:
a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)
\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)
\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)
\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)
\(=2x^2+3x\)
Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(F\left(x\right)-3x+5\)
\(=4x^2+3x-2-3x+5\)
\(=4x^2+3\)
Vì \(x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)
Vậy ...
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.