Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :*x(x+y+z) = - 5 (1)
* y(x+y+z) = 9 (2)
* z(x+y+z)=5 (3)
Từ (1) ; (2) và (3) , ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5
Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :
(x+y+z) . (x+y+z) = 9
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3
\(-\) TRƯỜNG HỢP : x+y+z =3 :
* từ (1) có : x(x+y+z=3 ) = -5 và x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)
* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)
\(-\) TRƯỜNG HỢP x +y+z=-3 :
* từ (1) có x(x+y+z=3 ) = -5 và x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)
* từ (3) có : z(x+y+z) =5 và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)
Đảm bảo đúng 100% . K MIK NHA MN!
Đặt
\(x.\left(x+y+z\right)=-5\) (1)
\(y.\left(x+y+z\right)=9\) (2)
\(x.\left(x+y+z\right)=5\) (3)
Cộng (1);(2);(3) với nhau ta được
\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)
\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)
Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)
Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)
Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)
Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)
Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)
Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)
Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+5+9
(x+y+z)(x+y+z)=9
(x+y+z)^2=9
x+y+z=3 hoặc x+y+z=-3
Với x+y+z=3 thì x=-5/3, y=3, z=5/3
Với x+y+z=-3 thì x=5/3, y=-3, z=-5/3
Ta có: x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5
(x+y+z)(x+y+z) = 9
(x+y+z)2 = 9
x+y+z = 3
Ta có: x(x+y+z)=-5 =>x.3= -5 =>x= -5/3
y(x+y+z)=9 =>y.3= 9 =>y= 3
z(x+y+z)= 5 =>z.3=5 =>z=5/3
Vậy x=-5/3 ; y=3 ; z=5/3
\(\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}\)
Cộng theo vế của (1); (2) và (3) ta có:
\(\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=\pm9\)
Xét \(x+y+z=9\)
\(\Rightarrow\begin{cases}x\cdot9=-5\\y\cdot9=9\\z\cdot9=5\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{9}\\y=1\\z=\frac{5}{9}\end{cases}\)
Xét \(x+y+z=-9\)
\(\Rightarrow\begin{cases}x\cdot\left(-9\right)=\left(-5\right)\\y\cdot\left(-9\right)=9\\z\cdot\left(-9\right)=5\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{5}{9}\\y=-1\\z=-\frac{5}{9}\end{cases}\)
Vì x ( x + y + z ) = - 5
y ( x + y + z ) = 9
z ( x + y + z ) = 5
=> Ta có:
x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = -5 + 9 + 5
=>( x + y + z) (x + y + z) = (-5+5) + 9
=> (x + y + z)2 = 9
=>\(\) \(\left[{}\begin{matrix}x+y+z=3\\x+y+z=-3\end{matrix}\right.\)
Xét TH 1: x + y + z = 3
Thay x + y + z = 3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:
\(=>\left\{{}\begin{matrix}x.3=-5\\y.3=9\\z.3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
Xét TH 2; x + y + z = -3
Thay x +y + z = -3 vào x ( x + y + z ) = - 5 ; y ( x + y + z ) = 9 , z ( x + y + z ) = 5 ta được:
\(=>\left\{{}\begin{matrix}x.-3=-5\\y.-3=9\\z.-3=5\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-3\\z=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy.......
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Từ giả thiết,ta có:\(\left(x+y+z\right)\left(x+y+z\right)=-5.9.5=-225\Leftrightarrow\left(x+y+z\right)^2=-225\)n
=> x+y+z không tồn tại.
=> không tồn tại các số x,y,z
với x,y,z thuộc số hữu tì ta có
bn tự chép đề tại chỗ này nh a.
từ đề bài ,cộng vế theo vế ta có
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
suy ra (x+y+z)(x+y+z)=9 suy ra (x+y+z)^2=3^2 hay =(-3)^2
suy ra x+y+z=3 hay=-3
xét trường hợp 1 ta có x+y+z=3
suy ra x(x+y+z)=-5 suy ra x=-5/3
suy ra y=9/3=3
suy ra z=5/3
tương tự xét trường hợp thứ hai ta có x+y+z=-3
suy ra x=-5/-5=5/3
suy ra y=9/-3=-3
suy ra z=5/-3=-5/3
chỗ nào ko hiểu thì hỏi mình nha bn
chúc bn học tốt hi hi
bạn dở sbt trang 42 tìm bài 3.5 ở đó là có đáp án b nhé rất ngắn gọn b ạ :)))
Ta cộng cả 3 đẳng thức lại ta đc:
x(x+y+z)+y(x+y+z)+z(x+y+z)=9
<=>(x+y+z)2=9
<=>x+y+z=3
x(x+y+z)=-5
<=>3x=-5
<=>x=-5/3
y(x+y+z)=9
<=>3y=9
<=>y=3
z(x+y+z)=5
<=>3z=5
<=>z=5/3
Vậy x=-5/3;y=3;z=5/3
Ta có: \(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\left(x+y+z\right)^2=9\)
\(\Leftrightarrow x+y+z=-3\) hoặc \(3\)
Nếu \(x+y+z=-3\) thì \(\hept{\begin{cases}x=\frac{-5}{-3}=\frac{5}{3}\\y=\frac{9}{-3}=-3\\z=\frac{5}{-3}=\frac{-5}{3}\end{cases}}\)
Nếu \(x+y+z=3\) thì: \(\hept{\begin{cases}x=\frac{-5}{3}=-\frac{5}{3}\\y=\frac{9}{3}=3\\z=\frac{5}{3}=\frac{5}{3}\end{cases}}\)
Vậy...