Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
=> \(0\le a^2;b^4;c^6;d^8\le1\)
=> \(-1\le a;b;c;d\le1\)
=> \(a^{2016}\le a^2\); \(b^{2017}\le b^4\); \(c^{2018}\le c^6\); \(d^8\le d^{2019}\)
=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)
Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)
<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)
<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\); \(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\); \(\orbr{\begin{cases}d=0\\d=1\end{cases}}\); \(a^2+b^4+c^6+d^8=1\)
<=> \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).
Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Ở link trên đã tìm đc các giá trị của a, b, c, d thay vào tìm đc M = 0.
akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma