\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{16}{y}+\dfrac{9}{z}=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y+z=2\\8y-4z=1\\x+y+2z=4\end{matrix}\right.\)

=>y=9/20; z=13/20; x=4-y-2z=9/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}z=23-x-y\\z=31-y-t\\z=27-t-x\\x+y+t=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-y+23=-y-t+31\\-y-t-31=-x-t+27\\x+y+t=33\\z=23-x-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+t=8\\x-y=58\\x+y+t=33\\z=23-x-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x+8\\y=x-58\\x-58+x+8+x=33\\z=23-x-y\end{matrix}\right.\)

=>x=83/3; t=107/3; y=-91/3; z=23-83/3+91/3=77/3

a: Sửa đề: 

\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)

=>x=4; y=3; z=9

 

26 tháng 3 2017

\(\left\{{}\begin{matrix}x+y^2+z^3=3\left(1\right)\\\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\left(2\right)\end{matrix}\right.\)

Do \(x,y,z\) là các số dương nên ta áp dụng BĐT AM-GM cho \(pt\left(1\right)\):

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^3+1+1\geq 3\sqrt[3]{z^3}=3z\)

\(\Rightarrow x+y^2+z^3+3\ge x+2y+3z\)

\(\Rightarrow VT+3\le x+2y+3z\Rightarrow x+2y+3z\le6\)

Xét \(pt\left(2\right)\) lại có: \(VT=\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=\dfrac{1}{x}+\dfrac{2^2}{2y}+\dfrac{3^2}{3z}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{x}+\dfrac{2^2}{2y}+\dfrac{3^2}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}=\dfrac{36}{6}=6=VP\left(x+2y+3z\le6\right)\)

Đẳng thức xảy ra khi \(x=y=z\)

Thay \(x=y=z\) vào \(pt\left(1\right)\) ta có:

\(x+x^2+x^3=3\Leftrightarrow x=1\Rightarrow x=y=z=1\)

25 tháng 5 2017

4) Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)

\(\Rightarrow\dfrac{x^2}{x^4+yz}\le\dfrac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{y^4+xz}\le\dfrac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\dfrac{z^2}{z^4+xy}\le\dfrac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{matrix}\right.\)

\(\Rightarrow VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

Chứng minh rằng \(2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{3}{4}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)

\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)

\(\Rightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\dfrac{x^2}{4x^2\sqrt{yz}}=\dfrac{1}{4\sqrt{yz}}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\dfrac{1}{4\sqrt{xz}}\\\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4\sqrt{xy}}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)

Theo đề bài ta có \(x^2+y^2+z^2=3xyz\)

\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}=3\)

\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)

\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\dfrac{1}{\sqrt{xy}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{2}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{xz}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{z}}{2}\\\dfrac{1}{\sqrt{yz}}\le\dfrac{\dfrac{1}{z}+\dfrac{1}{y}}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (1)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}\ge2\sqrt{\dfrac{1}{z^2}}=\dfrac{2}{z}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{2}{x}\\\dfrac{x}{zy}+\dfrac{z}{xy}\ge\dfrac{2}{y}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\right)\ge2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Leftrightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\) ( đpcm )

Vậy \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)

\(\Rightarrow2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)

\(VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

\(\Rightarrow VT\le\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=1\)

25 tháng 5 2017

3. Ta có :\(x^2\left(1-2x\right)=x.x.\left(1-2x\right)\le\dfrac{\left(x+x+1-2x\right)^3}{27}=\dfrac{1}{27}\)(bđt cô si)

Dấu "=" xảy ra khi :x=1-2x\(\Leftrightarrow x=\dfrac{1}{3}\)

Vậy max của Qlaf 1/27 khi x=1/3

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

\((\sqrt{x}+\sqrt{y}+\sqrt{z})^2=5^2=25\)

\(\Rightarrow x+y+z+2(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})=25\Rightarrow \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\frac{25-9}{2}=8\)

\(\Rightarrow xy+yz+xz+2\sqrt{xyz}(\sqrt{x}+\sqrt{y}+\sqrt{z})=64\)

\(\Rightarrow xy+yz+xz+10\sqrt{xyz}=64\)

Thay vào PT(3):

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{2}\Rightarrow \frac{xy+yz+xz}{xy}=\frac{3}{2}\)

\(\Rightarrow \frac{64-10\sqrt{xyz}}{xyz}=\frac{3}{2}\)

Đặt \(\sqrt{xyz}=t\Rightarrow \frac{64-10t}{t^2}=\frac{3}{2}\Rightarrow 3t^2+20t-128=0\)

\(\Rightarrow t=4\) (chọn) hoặc \(t=-\frac{32}{3}< 0\) (loại)

\(\Rightarrow \sqrt{xy}=\frac{4}{\sqrt{z}}\)

\(\Rightarrow 8=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\frac{4}{\sqrt{z}}+\sqrt{z}(\sqrt{x}+\sqrt{y})=\frac{4}{\sqrt{z}}+\sqrt{z}(5-\sqrt{z})\)

Đặt \(\sqrt{z}=k\Rightarrow 8k=4+5k^2-k^3\)

\(\Rightarrow k^3-5k^2+8k-4=0\)

\(\Rightarrow k^2(k-1)-4(k^2-2k+1)=0\)

\(\Rightarrow (k-1)(k-2)^2=0\Rightarrow k=1; k=2\)

Nếu $k=1$ suy ra $z=1$. Thay vào giải hpt 2 ẩn ta thu được $x=y=4$

Nếu $k=2$ thì $z=4$. Thay vào giải hpt 2 ẩn ta thu được $(x,y)=(4,1)$ và hoán vị

Vậy $(x,y,z)=(4,4,1)$ và hoán vị của nó.

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

11 tháng 1 2019

ĐK:: x,y,z\(\ne0\)

\(\left\{{}\begin{matrix}x+y+z=9\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\\xy+yz+zx=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xy+yz+zx=xyz\\xy+xz+yz=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xyz=27\\xy+yz+xz=27\end{matrix}\right.\)

Coi x;y;z là ba nghiệm x1;x2;x3 của một phương trình bậc ba. Theo công thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=9\\x_1x_2+x_2x_3+x_3x_1=27\\x_1x_2x_3=27\end{matrix}\right.\)

Suy ra x1;x2;x3 là ba nghiệm của phương trình

\(X^3-9X^2+27X-27=0\Leftrightarrow\left(X-3\right)^3=0\Leftrightarrow X=3\)

Vậy (x;y;z)=(3;3;3)