K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

Vì x,y,z là cái số dương nên x,y,z >0 

mà x+y+z=3 (=) x=1,y=1,z=1 ( vì x,y,z >0)

27 tháng 8 2016

\(\Rightarrow x^4+y^4+z^4-3xyz=0\)

\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(\Rightarrow\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y\right)-3xyz=0\)

\(\Rightarrow\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=0\\x-z=0\\y-z-0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}\Rightarrow}x=y=z=1}\)

13 tháng 11 2017

x^3+y^3+z^3=3xyz

<=>x^3+y^3+z^3-3xyz=0

<=>(x+y+z).(x^2+y^2+z^2-xy-yz-zx)=0

<=>x^2+y^2+z^2-xy-yz-zx=0 (vì x,y,z > 0 nên x+y+z > 0)

<=>2x^2+2y^2+2z^2-2xy-2yz-2zx=0

<=>(x-y)^2+(y-z)^2+(z-x)^2=0

<=>x-y=0;y-z=0;z-x=0

<=>x=y=z (ĐPCM)

k mk nha

28 tháng 2 2021

Theo BĐT Cosi ta có: \(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4\cdot y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4\cdot z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4\cdot x^4}=x^2z^2\end{cases}\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2}\)

chứng minh tương tự: \(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge3xyz\)(do x+y+z=3) 

Do đó: \(x^4+y^4+z^4\ge3xyz\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^4;y^4=z^4;z^4=x^4\\x^2y^2=y^2z^2;y^2z^2=z^2x^2;z^2x^2=x^2y^2\end{cases}\Leftrightarrow x=y=z}\)(1)

mà x+y+z=3 (2)

Từ (1) và (2) => 3x=3 => x=1 => y=z=1

=> \(x^{2018}+y^{2019}+x^{2020}=1+1+1=3\)

28 tháng 11 2019

Biến đổi tương đương giả thiết: \(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\) (xét hiệu 2 vế, cái đẳng thức này quen thuộc nên bạn tự biến đổi)

Do x, y, z dương nên x + y + z > 0. Do đó để đẳng thức trong giả thiết xảy ra thì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\). Thay y, z bởi x vào M ta được M = 3.

Mình nêu hướng làm thôi!

6 tháng 12 2015

Ta có:

\(x^3+y^3+z^3=3xyz\)

nên  \(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2+\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\right]=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow^{x+y+z=0}_{x=y=z}\)

Do đó:

\(M=\left(2-\frac{x}{y}\right)^{2013}+\left(3-\frac{2x}{z}\right)^{2014}+\left(4-\frac{3z}{x}\right)^{2015}\)

\(=\left(2-\frac{y}{y}\right)^{2013}+\left(3-\frac{2z}{z}\right)^{2014}+\left(4-\frac{3x}{x}\right)^{2015}\)

\(=\left(2-1\right)^{2013}+\left(3-2\right)^{2014}+\left(4-3\right)^{2015}\)

\(M=1^{2013}+1^{2014}+1^{2015}=1+1+1=3\)

                                                    ----------------------------------------------------