Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi số đó là abcd=m2 (31<m<100) , ta có :
cd=ab.k=>ab.10k=m2 ( 0<k<10 )
Nếu 10k khi phân tích ra thừa số nguyên tố chỉ chứa các thừa số nguyên tố. Mà m2 chia hết cho 10k => m sẽ chia hết cho số 10k.
Mà 0<m<100 nên m không thể chia hết được cho 10k ( loại ).
Khi đó : m sẽ là một trong các số sau 104 ;108.
Nếu 10k=108=>m2 chia hết cho 27.
=>m2 chia hết cho 81.
=>ab chia hết cho 3.
Vì cd=ab.8=>10< ab < 13.Mà ab chia hết cho 3 nên ab = 12.=>cd=96 (t/m).
Nếu 10k = 104 =>m2 chia hết cho 13.
=>m2 chai hết cho 132.
=>ab chai hêt cho 13 mà 0<ab<25.=>ab=13=cd=52 .(loại vì số chính phương không có tận cùng là 2)
Vậy số cần tìm là 1296.

2. Các số đó là 153, 351, 450, 657, 756, 297, 459.
Còn lại mik ko biết thông cảm nha
k với
câu 1 đáp án là 1998 ta lấy 333,666,999 cộng lại sẽ ra

gọi số tự nhiên phải tìm là a2(9999<a2>1000)
Vì a2 chia hết cho 153 =>a2=153.k=32.17.k (k>0)
=>k=17.t2 (t>0).
Với t=1=>k=17 =>a2=32.172=2601(thỏa)
Với t=2=>k=68 =>a2=32.17.68=10404(không thỏa nên không xét tiếp)
Vậy số chính phương có 4 chữ số phải tìm là 2601
Số đó là:2601
Nick Nguyễn đức toàn là của mình
Nhưng k nick này hộ mình nhé
Nick đó lập để troll bn mình í mà

Gọi số cần tìm là \(\overline{xy}\)với x,y là các chữ số,\(x\ne0\)
Theo đề ra,ta có:\(\overline{xy}=kxy\)với \(k\inℕ\)
Đẳng thức trên tương đương với:\(\left(kx-1\right)y=10x\)
\(\Leftrightarrow y=\frac{10x}{kx-1}\)với \(kx-1\ne1\)
\(\Rightarrow10x⋮kx-1\)vì y là số tự nhiên
Vì \(\left(x,kx-1\right)=1\)\(\Rightarrow10⋮kx-1\)
Mà \(kx-1\)là số dương nên \(kx-1\in\left\{2;5;10\right\}\)
Xét các trường hợp ta được 5 số thỏa mãn đề bài là:\(11;12;15;24;36\)