Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích phân số \(\dfrac{30}{43}\) ta có:
\(\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}\)
\(=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
Vậy: \(\left\{{}\begin{matrix}a=1\\b=2\\c=3\\d=4\end{matrix}\right.\)
\(\dfrac{30}{43}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
\(\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\\Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\\d=4\end{matrix}\right.\)
Vậy............
a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3
\(\Rightarrow\) n - 2 \(\in\) Ư(3)
\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}
n \(\in\){5; -1; 3; 2}
c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{3}-\dfrac{1}{30}\)
\(=\dfrac{10}{30}-\dfrac{1}{30}\)
\(=\dfrac{9}{30}\)
=\(\dfrac{3}{10}\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
Ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) \(\Rightarrow a;b;c< 1\)
Xét \(a\ne b\ne c\) thì rõ ràng ta thấy không có giá trị tự nhiên thõa mãn cho a ; b ;c.
Xét \(a=b=c\) thì ta lại có 3 TH :
TH1: \(a=b=c=2\), thế vào biểu thức ta có:
\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}>1\) (loại)
TH2: \(a=b=c=3\), thế vào biểu thức ta có:
\(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\) (đúng)
TH3: \(a=b=c< 3\)
Thì \(\dfrac{1}{a+q}+\dfrac{1}{b+q}+\dfrac{1}{c+q}>\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)(loại)
Vậy \(a=b=c=3\)
Không biết có đúng không nữa
có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:
x = {-2;2}
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
Có \(\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}\)
Vậy a=1; b=2 ; c=3 ; d=4
ta thấy : \(\dfrac{a}{b}\) = \(\dfrac{1}{\dfrac{b}{a}}\)
\(\Rightarrow\) \(\dfrac{30}{43}\) = \(\dfrac{1}{\dfrac{43}{30}}\)
= \(\dfrac{1}{1+\dfrac{13}{30}}\)
= \(\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}\)
= \(\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{15}}}\)
= \(\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{15}{2}}}}\)
=\(\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{7+\dfrac{1}{2}}}}\)
Vậy a = 1; b = 2; c = 7; d = 4