K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ

=> A CÓ THỂ BẰNG 1 . 4 . 9

+, TH1 : A = 1

=> 1D LÀ SỐ CHÍNH PHƯƠNG

=> D = 6

=> C6 LÀ SỐ CHÍNH PHƯƠNG

=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)

=> 1B36 LÀ SỐ CHÍNH PHƯƠNG

=> B = 9 ( DO 44^2 = 1936

+. TH2 : A= 4

=> 4D LÀ SỐ CHÍNH PHƯƠNG 

=> D = 9

=> C9 LÀ SỐ CHÍNH PHƯƠNG

=> C HOẶC BẰNG 0 , HOẶC BẰNG 4

+. NẾU C = 0

=> 4B09 LÀ SỐ CHÍNH PHƯƠNG

=> LOẠI DO KHÔNG CÓ B THỎA MÃN

+, NẾU C = 4

=> 4B49 LÀ SỐ CHÍNH PHƯƠNG

=> KHÔNG TỒN TẠI B THỎA MÃN

+, A = 9

=> 9D LÀ SỐ CHÍNH PHƯƠNG 

=> KHÔNG TÍM THẤY D THỎA MÃN

 VẬY A= 1 , B = 9 , C=3 , D=6

3 tháng 5 2017

a=1,4,9.

Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết

Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.

Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.

Vậy không tồn tại a,b,c,d thỏa đề ra !

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

26 tháng 7 2016

M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn

Vậy M không phải là số chính phương

1 tháng 8 2016

Cảm ơn bạn bạn

7 tháng 2 2017

Ta có:\(\overline{bacd}=n^2\) (n\(\in\) N*)

Do a<b<c<d và \(d\notin\left\{2;3;7;8\right\}\Rightarrow d\in\left\{4;5;6;9\right\}\)

Thử: \(d=4\Rightarrow\overline{bacd=2134}\)(chia hết cho 2 nhưng không chia hết cho 4) (không thỏa mãn )

\(d=5\Rightarrow\overline{bacd=3245}\)(chia hết cho 5 nhưng không chia hết cho 25) (không thỏa mãn )

\(d=6\Rightarrow\overline{bacd}=4356=66^2\)(Thỏa mãn)\(\Rightarrow\overline{abcd}=3456\)

\(d=9\Rightarrow\overline{bacd}=7689\)(chia hết cho 3 nhưng không chia hết cho 9) (không thỏa mãn )

chia hết cho 2 nhưng không chia hết cho 4) (không thỏa mãn )

Vậy \(\overline{abcd}=3456\)

18 tháng 1 2020

Câu 2. Giả sử ${{n}^{2}}=\overline{abcd}=100\overline{ab}+\overline{cd}=100\left( 1+\overline{cd} \right)+\overline{cd}=101\overline{cd}+100,n\in Z$

$\Rightarrow 101\overline{cd}={{n}^{2}}-100=\left( n-10 \right)\left( n+10 \right).$

Vì $n<100$ và $101$ là số nguyên tố nên $n+10=101\Rightarrow n=91.$

Thử lại: $\overline{abcd}={{91}^{2}}=8281$ có $82-81=1.$

Vậy $\overline{abcd}=8281$

18 tháng 1 2020

Câu 1:

\(xy+3x-y=6\)

\(\Rightarrow xy+3x-y-3=6-3\)

\(\Rightarrow\left(xy+3x\right)-\left(y+3\right)=3\)

\(\Rightarrow x.\left(y+3\right)-\left(y+3\right)=3\)

\(\Rightarrow\left(y+3\right).\left(x-1\right)=3\)

\(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y+3\in Z\\x-1\in Z\end{matrix}\right.\)

\(\Rightarrow y+3\inƯC\left(3\right);x-1\inƯC\left(3\right)\)

\(\Rightarrow y+3\in\left\{1;3;-1;-3\right\};x-1\in\left\{1;3;-1;-3\right\}.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y+3=1\\x-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=3\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=-1\\x-1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=-3\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=4\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=-4\\x=-2\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=-6\\x=0\end{matrix}\right.\left(TM\right)\end{matrix}\right.\)

Vậy cặp số nguyên \(\left(x;y\right)\) thỏa mãn đề bài là: \(\left(4;-2\right),\left(2;0\right),\left(-2;-4\right),\left(0;-6\right).\)

Chúc bạn học tốt!

25 tháng 5 2016

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

21 tháng 10 2016

mk thấy hình như phải nạp thẻ ms xem dc hết mà