Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
Bài 1:
\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2.04:\left(x+1.05\right)\right]:0.12=19\)
\(\Leftrightarrow\left[2.04:\left(x+1.05\right)\right]:0.12=1\)
\(\Leftrightarrow2.04:\left(x+1.05\right)=0.12\)
\(\Leftrightarrow x+1.05=17\)
hay x=15,85
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
2a - (5- 4a) +(6a -1) -(2+a)
= -10a - 8a^2 +6a -1 -2 -a
= -8a^2 -5a -3
5a - 2b +3 - (2a -5b +6) +(a+3b -1)
= 5a -2b +3 -2a+5b -6 +a + 3b -1
= 4a +6b -4
6x(x-1) -1(6x^2 -8x +3) = 7 -(x-1)
6x^2 -6x - 6x^2 + 8x -3 = 7 -x +1
3x = 11
x= 11/3
7x(2x-1) - (14x^2 -8x +5) = 7- (-2x +3)
14x^2 - 7x - 14x^2 + 8x - 5 = 7 + 2x -3
-x = 9
x=-9
\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)
\(B=70\cdot13\cdot\frac{3}{70}\)
\(B=70\cdot\frac{3}{70}\cdot13\)
\(B=3\cdot13\)
\(B=39\)
a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ
\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)
Vì 1006 là số chẵn => 1006.2011 là số chẵn
b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)
c) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
=> C=4
Ta có: \(\left(-2a^2b^3\right)^{10}=\left(-2\right)^{10}.\left(a^2\right)^{10}.\left(b^3\right)^{10}=2^{10}.a^{20}.b^{30}\)
\(\left(3b^2c^4\right)^{15}=3^{15}.\left(b^2\right)^{15}.\left(c^4\right)^{15}=3^{15}.b^{30}.c^{60}\)
Vì \(2^{10}.a^{20}.b^{30}\ge0\) với mọi a;b
\(3^{15}.b^{30}.c^{60}\ge0\) với mọi b;c
=>\(2^{10}.a^{20}.b^{30}+3^{15}.b^{30}.c^{60}\ge0\) với mọi a;b;c
Mà \(2^{10}.a^{20}.b^{30}+3^{15}.b^{30}.c^{60}=0\) (theo đề)
=>\(2^{10}.a^{20}.b^{30}=3^{15}.b^{30}.c^{60}=0\)
=>a20.b30=b30.c60=0
=>a.b=b.c=0
Vậy b=0;a và c tùy ý hoặc a=c=0;b tùy ý