Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)
(*)Ta cần CM bất đẳng thức sau: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Nhân ab vào 2 vế,ta được:
\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Rightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\left(a-b\right)^2\ge0\)
=>BĐT đúng với mọi a;b
Tương tự,ta cũng có: \(\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
Do đó \(S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\left(đpcm\right)\)
s1+s2+s3=b/a *x+c/a *z+a/b *x+c/b *y+a/c *z+b/c *y
=(b/a *x+a/b *x)+(c/b *y+b/c *y)+(a/c *z+c/a *z)
=(b/a+a/b)*x+(c/a+a/c)*z+(c/b+b/c)*y lớn hơn hoặc bằng 2*x+2*y+2*z=2*(x+y+z)=2*5=10
suy ra ĐPCM