Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
đặt \(A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{3a+4b}{2a}=\dfrac{3bk+4b}{2bk}=\dfrac{3k+4}{2k}\)
\(\dfrac{3c+4d}{2c}=\dfrac{3dk+4d}{2dk}=\dfrac{3k+4}{2k}\)
Do đó: \(\dfrac{3a+4b}{2a}=\dfrac{3c+4d}{2c}\)
a) \(\left(x+5\right)^3=64\)
\(\Leftrightarrow\left(x+5\right)^3=4^3\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)
Vậy x = - 1
b) \(x:\left(-\frac{3}{5}\right)^2=-\frac{3}{5}\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^2.\left(-\frac{3}{5}\right)\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^3\)
\(\Leftrightarrow x=-0,216\)
Vậy x = - 0, 216
c) \(\left(\frac{4}{7}\right)^4.x=\left(\frac{4}{7}\right)^6\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^6:\left(\frac{4}{7}\right)^4\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^2\)
\(\Leftrightarrow\text{x}=\frac{16}{49}\)
Vậy x = 16/49
d) \(\left(-\frac{1}{3}\right)^3x=\frac{1}{81}\)
\(\Leftrightarrow-\frac{1}{27}x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = - 1/3
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}.\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\) và \(a^2-b^2+2c^2=108.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a^2}{4}=4\Rightarrow a^2=16\Rightarrow\left[{}\begin{matrix}a=4\\a=-4\end{matrix}\right.\\\frac{b^2}{9}=4\Rightarrow b^2=36\Rightarrow\left[{}\begin{matrix}b=6\\b=-6\end{matrix}\right.\\\frac{c^2}{16}=4\Rightarrow c^2=64\Rightarrow\left[{}\begin{matrix}c=8\\c=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(4;6;8\right),\left(-4;-6;-8\right).\)
Chúc bạn học tốt!