K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)

( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)

\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)

Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)

\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)

Thế vào: a + b + c = 69

\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)

\(\Rightarrow c=45\)   

\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)  

8 tháng 1 2017

Dùng tính chất dãy tỉ số bằng nhau mà làm

20 tháng 11 2017

Ta có :

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)

25 tháng 6 2019

a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)

Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:

\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)

b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)

24 tháng 3 2017

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)

\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)

\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)

Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)

13 tháng 7 2018

bạn dùng TC dãy tỉ số bằng nhau đi

cộng vào là ra kết quả ngay mà

17 tháng 10 2015

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) => \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\) => \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\) => \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) => a = b = c

Vậy B = \(\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)