Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/10=b/15;b/15=c/12=>a/10=b/15=c/12
áp dụng t/chất dãy tỉ số bằng nhau ta có:
a/10=b/15=c/12=a-b+c/10-15+12=-49/7=-7
a/10=-7=>a=10.-7=-70
b/15=-7=>b=15.-7=-105
c/12=-7=>b=12.-7=-84
Vậy:a=-70;b=-105;c=-84
chúc bn học tốt
Ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\) và \(a-b+c=-49\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\hept{\begin{cases}\frac{a}{10}=-7\Rightarrow a=-7.10=-70\\\frac{b}{15}=-7\Rightarrow b=-7.15=-105\\\frac{c}{12}=-7\Rightarrow c=-7.12=-84\end{cases}}\)
Vậy \(a=-70;b=-105;c=-84\)
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
Ta có : \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}\\\frac{b}{12}=\frac{c}{15}\end{cases}\Rightarrow}\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2}\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a=16\\b=24\\c=30\end{cases}}\)
Ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\) và \(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow a=2.8=16\) \(b=12.2=24\) \(c=15.2=30\)
Vậy \(a=16;b=24;c=30\)
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
đề sai nha,theo mình nghĩ là
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=>\(\frac{a^3}{2^3}=\frac{b^3}{3^3}=\frac{c^3}{4^3}\)
=\(\frac{a^3}{8}=\frac{b^3}{27}=\frac{c^3}{64}\)
=\(\frac{a^3+b^3+c^3}{8+27+64}=\frac{a^3+b^3+c^3}{99}\)
=\(\frac{792}{99}=8\)
\(\frac{a^3}{8}=8\Rightarrow a^3=8.2=64=4^3\Rightarrow a=4\)
\(\frac{b^3}{27}=8\Rightarrow b^3=8.27=216=6^3\Rightarrow b=6\)
\(\frac{c^3}{64}=8\Rightarrow c^3=8.64=512=8^3\Rightarrow c=8\)
vậy a=4;b=6;c=8
Theo tính chất dãy tỉ số bằng nhau ta có :
a/3=b/2=c/5 và a-b+c=-10,2
=>a-b+c/3-2+5=-10,2/6=-1,7
=>a/3=-1,7=>a=-5,1
b/2=-1,7=>b=-3,4
c/5=-1,7=>c=-8,5
Vậy a=-5,1 ; b=-3,4 ; c=-8,5
chúc bạn học giỏi .
cảm ơn bạn nhiều!!!!!!!!!!!!!