Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{20a+13}{4a+3}=\frac{20a+15}{4a+3}-\frac{2}{4a+3}=5-\frac{2}{4a+3}\) đạt GTNN
<=> \(\frac{2}{4a+3}\) đạt GTLN <=> 4a + 3 đạt GTNN
Xét 4a + 3 > 0 vì nếu 4a + 3 < 0 thì \(\frac{2}{4a+3}<0\) do đó không thể đạt GTLN
Mà 4a + 3 > 0 đạt GTNN <=> 4a > 0 đạt GTNN <=> 4a = 0 <=> a = 0
Vậy a = 0
\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}=\frac{3}{2}+\frac{6}{4n-6}\)
Do đó, để M có giá trị lớn nhất thì 6/(4n-6) có giá trị lớn nhất
=>4n-6 có giá trị nhỏ nhất(nEN)
=>4n-6=2
4n=6+2
4n=8
n=8/4=2
Nếu n=2 thì M=\(\frac{3}{2}+\frac{6}{4\cdot2-6}=\frac{3}{2}+\frac{6}{8-6}=\frac{3}{2}+3=\frac{3}{2}+\frac{6}{2}=\frac{9}{2}=4,5\)
Vậy M đạt giá trị lớn nhất là 4,5 tại n=2
Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất
nên /3-x/=0(vì /3-x/ luôn >=0 dấu)
3-x=0
x=3
D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)
nên \x-2\+2=2
\x-2\=0
x-2=0
x=2
Ta có :
\(\frac{\left|2x-3\right|+2^{2015}}{\left|3-2x\right|+3^{2015}}=\frac{\left|2x-3\right|+2^{2015}}{\left|2x-3\right|+3^{2015}}\) có GTNN
\(\Leftrightarrow\left|2x-3\right|\) có GTNN
\(\Leftrightarrow\left|2x-3\right|=0\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=1,5\)
\(A=\frac{5a-17}{4a-23}=\frac{\frac{5}{4}x\left(4a-23\right)+\frac{115}{4}-17}{4a-23}=\frac{5}{4}+\frac{47}{4x\left(4a-23\right)}\)
Để \(A\) lớn nhất thì \(\frac{1}{4a-23}\) là số dương lớn nhất => 4a - 23 là nhỏ nhất mà \(A\) là số tự nhiên => 4a - 23 = 1 => \(A\) = 6
Vậy \(A\) = 6 thì \(A\) lớn nhất bằng \(\frac{5}{4}+\frac{47}{4}=\frac{52}{4}=13\)
Có được GP không vậy ?
a,Nx: (x+1)2008>=0 với mọi x
=>20- (x+1)2008< hoặc = 20
=> GTLN của A là 20 tại (x+1)2008=0
=> x+1=0
=> x=-1
Vậy GTLN của A là 20
b,Nx: /3-x/> hoặc= 0 với mọi x
=>1010-/3-x/ < hoặc = 0
=>GTLN của B là 1010 tại /3-x/=0
=>3-x=0
=>x=3
c, Nx : (x-1)2 > hoặc = 0
=> (x-1)2 +90 > hoặc = 90
=> GTNN của C là 90 tại (x-1)2=0
=> x-1=0
=> x=1
Vậy GTNN của C là 90
d, Nx: /x+4/> hoặc =0
=> /x+4/ +2015 > hoặc = 2015 với mọi x
=>GTNN của D là 2015 tại /x+4/=0
=> x+4=0
=> x= -4
Vậy GTNN của D là 2015
a) Để A có giá trị nguyên thì n + 1 chia hết cho n - 3
=> n - 3 + 4 chia hết cho n - 3
Mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4)
=> n - 3 thuộc {-4; -2; -1; 1; 2; 4}
=> n thuộc {-1; 1; 2; 4; 5; 7}
b) Để A có giá trị phân số thì n - 3 khác 0
=> n khác 3
Để \(\frac{20+13}{4a+3}=\frac{33}{4a+3}\) đạt giá trị nhỏ nhất thì 4a+3 đạt giá trị nhỏ nhất và \(33\left(4a+3\right)\ge0\)
\(\Rightarrow4a\) đạt giá trị nhỏ nhất là số nguyên dương
\(\Rightarrow a=0\)
0