K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2021

Hàm là \(f\left(x\right)=\left(x^2-3x+3\right).e^2\)  hay \(\left(x^2-3x+3\right)e^x\) bạn?

Nếu hàm là \(f\left(x\right)=\left(x^2-3x+3\right)e^2\) thì đơn giản là bạn khảo sát như khảo sát hàm \(g\left(x\right)=x^2-3x+3\)

18 tháng 5 2019

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

15 tháng 9 2023

\(y=f\left(x\right)=\dfrac{2-3x}{x+2}\left(đk:x\ne-2\right)\)

\(y'=\dfrac{-8}{\left(x+2\right)^2}< 0\forall x\ne-2\)

=> Hàm số f(x) không có cực trị

13 tháng 5 2017

Đáp án A.

Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.

Mệnh đề II, III, IV đúng

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

27 tháng 3 2016

Do \(f'\left(x\right)=x^2-2mx-1=0\)

Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại  \(x_1,x_2\)  với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)

Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên

\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)

\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)

Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)

                  \(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)

                  \(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)

\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)

Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0

23 tháng 6 2019

12 tháng 8 2018

Phương pháp:

Sử dụng cách đọc đồ thị hàm số.

Cách giải:

Từ đồ thị hàm số ta thấy

+ Đồ thị đi xuống trên khoảng 0;1

nên Hàm số nghịch biến trên

khoảng 0;1. Do đó (I) đúng

+ Đồ thị đi lên trên khoảng 1;0,

 đi xuống trên khoảng 0;1và đi

lên trên khoảng 1;2 nên trên

khoảng 1;2 hàm số không

hoàn toàn đồng biến. Do đó (II) sai.

+ Đồ thị hàm số có ba điểm hai

điểm cực tiểu và một điểm cực

đại nên (III) đúng.

+ Giá trị lớn nhất của hàm số là

tung độ của điểm cao nhất của đồ

thị hàm số nên (IV) sai.

Như vậy ta có hai mệnh đề đúng

là (I) và (III).

Chọn B.

31 tháng 10 2017

Mệnh đề đúng là (I) và (III).

Chọn B.