Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x4 - 9x3 + 21x2 + ax + b
g(x) = x2 - x - 2
Ta có f(x) bậc 4 ; g(x) bậc 2
=> Thương là một đa thức bậc 2
Gọi đa thức thương đó là h(x) = x2 + cx + d
Ta có f(x) chia hết cho g(x)
<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )
<=> x4 - 9x3 + 21x2 + ax + b = x4 + cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d
<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)
Vậy ...
gọi thưong trong phép chia trên là Q(x)
theo bài ra ta có
5x^3+2x^2+ax+b=(x^2+5).Q(x)+1 với mọi x (*)
thay x^2+5=0 vào (*) ta có
5x^3+2x^2+ax+b=1 (1)
mặt khác vì x^2+5=0
<=>5x(x^2+5)+2(x^2+5)=5x^3+2x^2+25x+10=0
<=>5x^3+2x^2+25x+11=1 (2)
từ (1) và (2)
<=>ax+b=25x+11
<=>a=25
b=11
vậy a=25 b=11 thì 5x^3+2x^2+ax+b chia cho x^2+5 dư 1
\(\dfrac{P}{x+2}=\dfrac{2x^3-3x^2+ax+b}{x+2}\)
\(=\dfrac{2x^3+4x^2-7x^2-14x+\left(a+14\right)x+2a+28-2a-28+b}{x+2}\)
\(=2x^2-7x+a+14+\dfrac{-2a-28+b}{x+2}\)
Để dư là -18 thì -2a-28+b=-18
=>-2a+b=-18+28=10
=>b=2a+10
Vậy: \(\left\{{}\begin{matrix}a\in R\\b=2a+10\end{matrix}\right.\)