K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

Thay b = 3a + c vào f(x) ta được:

f(x) = ax+ (3a+c)x+ cx + d

⇒ f(1) = a.13 + 3a + c.12+ c.1 + d

          = a + 3a + c + c + d

          = 4a + 2c + d

          = 4a + 2c + d                          (1)

f(2) = a.2+ 3a + c.2- c.2 + d

      = 8a + 3a + 4c - 2c + d

      = 4a + 2c + d                        (2)

Từ (1) và (2) ➩ f(1) = f(2) [= 4a + 2 + d]

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

23 tháng 1 2022

Bài 2:

- Thay x=0 vào P(x) ta được:

P(0)=d => d là số lẻ.

- Thay x=1 vào P(x) ta được:

P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.

- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:

P(e)=ae3+be2+ce+d=0

=>ae3+be2+ce=-d

=>e(ae2+be+c)=-d

=>e=\(\dfrac{-d}{ae^2+be+c}\).

Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho

ae2+be+c.

- Vậy P(x) không thể có nghiệm là số nguyên.

23 tháng 1 2022

thanks bn rất nhiều !!!!! 

10 tháng 5 2023

Yêu cầu đề bài có vẻ không rõ ràng lắm, bạn viết lại được không?

10 tháng 5 2023

a, n \(\in\) Z  sao cho (2n - 3) \(⋮\) (n+1)

                           2n + 2 - 5 ⋮ n + 1

                          2(n+1) - 5 ⋮ n + 1

                                         5 ⋮ n + 1

                            n + 1  \(\in\)  { -5; -1; 1; 5}

                                   n \(\in\)  { -6; -2; 0; 4}

Ý b đề ko rõ ràng em nhé 

                   

 

                         

8 tháng 8 2016

ta có : \(2^{33}\equiv8\)(mod31)

\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)

\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)

\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)

=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)

vậy số dư pháp chia trên là 2

13 tháng 12 2017

a) (x,y)=(0,17),(1,9)

k mk di

28 tháng 1 2020

a)               ta có : 12 = 6.2 = 2.6 = 12.1 = 1.12

=) 2x+1 = 6;2;12;1

=) x = 0

=) y - 5 = 2;6;1;12

=) y= 7;11;6;17