\(ax^3+bx^2+c\)chia hết cho \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc

ax3+bx2+c=(x-2).f(x)

Đẳng thức trên luôn đúng với mọi x

* với x=2 thì 8a+4b+c=0                                               (1)

gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có

ax3+bx2+c=(x-1)(x+1).q(x)+2x+5

đẳng thức trên luôn đúng

* với x=1 thì a+b+c=7                                                   (2)

* với x=-1 thì -a+b+c=3                                                (3)

từ (1) , (2) và (3) ta có

a=2 ,b=7 , c=-2

17 tháng 7 2019

gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc

ax3+bx2+c=(x-2).f(x)

Đẳng thức trên luôn đúng với mọi x

* với x=2 thì 8a+4b+c=0                                           (1)

gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có

ax3+bx2+c=(x-1)(x+1).q(x)+2x+5

đẳng thức trên luôn đúng

* với x=1 thì a+b+c=7                                           (2)

* với x=-1 thì -a+b+c=3                                           (3)

từ (1) , (2) và (3) ta có

a=2 ,b=7 , c=-2

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

15 tháng 8 2019

Thực hiện phép chia ta có:

Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)

\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)

=> \(4x-1⋮x^2+3\) (1)

=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)

Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)

=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)

=> \(-x-12⋮x^2+3\)

=> \(x+12⋮x^2+3\)

=> \(4x+48⋮x^2+3\) (2)

Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)

=> \(49⋮x^2+3\)

=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x

=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)

Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn

Vậy x=2

15 tháng 8 2019

Em cảm ơn cô

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1