Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) \(\Rightarrowđpcm\)
Bài 2:
\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì
\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)
Với \(f\left(-4\right)\) ta có:
\(f\left(-4\right)=-64+16a-4b-60=0\)
\(\Leftrightarrow16a-4b=124\)
(1)
Với \(f\left(-5\right)\) , ta có:
\(f\left(-5\right)=-125+25a-5b-60=0\)
\(\Leftrightarrow25a-5b=185\)(2)
Từ (1) và (2) , ta có:
\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)
Giải hệ ta được :
\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)
p/s: Lm xog chả bk mk lm cái zề nữa
T.Thùy Ninh
Theo bài toán:
\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)
\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)
Ta có:
\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)
\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)
\(=x^3-4x^2+x+6\)
p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)
Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà
Theo định lý Be-du thì số dư của \(P(x)=ax^3+bx^2+c\) khi chia cho \(x+2\) là:
\(P(-2)=-8a+4b+c=0\) (1)
Gọi đa thức thương khi chia $P(x)$ cho\(x^2-1\) là \(Q(x)\). Khi đó ta có:
\(ax^3+bx^2+c=(x^2-1)Q(x)+x+5\)
Thay \(x=\pm 1\) ta thu được:
\(\left\{\begin{matrix} a+b+c=0.Q(1)+6=6(2)\\ -a+b+c=0.Q(-1)+4=4(3)\end{matrix}\right.\)
Từ \((1)(2)(3)\Rightarrow \left\{\begin{matrix} a=1\\ b=1\\ c=4\end{matrix}\right.\)
Vậy \((a,b,c)=(1,1,4)\)
Sửa du thành đu