K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

để B LÀ SỐ NGUYÊN SUY RA TỬ CHIA HẾT CHO MẪU ĐÓ

=> N.(3N+1)+6N-10 CHIA HẾT CHO 3N+1

=>6N+2 -12CHIA HẾT CHO 3N+1

VÌ 6N+2 CHIA HẾT CHO 3N => 12 CHIA HẾT CHO 3N+1

=> 3N +1 THUỘC ƯỚC CỦA 12

SAU ĐÓ BẠN TỰ LẬP BẲNG NHA

18 tháng 3 2016

<=>n.(3n+1)+6n-10 chia hết cho 3n+1

<=>6n+2-12 chia hết cho 3n+1

Vì 6n+2 chia hết cho 3n=>12 chia hết cho 3n+1

=> 3n \in ước của 12

13 tháng 3 2017

số nguyên dương n là 2

7 tháng 8 2016

\(P=3n^3-7n^2+3n+6\)

\(=3n^3+2n^2-9n^2-6n+9n+6\)

\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)

\(=\left(3n+2\right)\left(n^2-3n+3\right)\)

để p là nguyên tố thì 3n+2 hoặc n2-3n+3  phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài) 

*3n+2=1=>n=-1/3

*n2-3n+3=1<=>n2-3n+2=0

\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)

                            \(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)

nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)

vậy n=1 

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

2 tháng 8 2016

a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)

=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d

=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d

=> (15n + 21) - (15n + 20) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> UCLN(3n + 4; 5n + 7) = 1

Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1

b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)

=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d

=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d

=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d

=> (56n + 80) - (56n + 70) chia hết cho d

=> 10 chia hết cho d

Mà d thuộc => d thuộc {1 ; 2 ; 5}

+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2

=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)

+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5

Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5

Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)

Vậy với \(n\ne2k\)và \(n\ne5k\)(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1

2 tháng 8 2016

a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)

=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d

=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d

=> (15n + 21) - (15n + 20) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> UCLN(3n + 4; 5n + 7) = 1

Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1

b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)

=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d

=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d

=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d

=> (56n + 80) - (56n + 70) chia hết cho d

=> 10 chia hết cho d

Mà d thuộc => d thuộc {1 ; 2 ; 5}

+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2

=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)

+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5

Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5

Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)

Vậy với $n\ne2k$n≠2kvà $n\ne5k$n≠5k(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1

4 tháng 10 2018

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)