Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
muốn M nhận giá trị nguyên thì \(x-2\inƯ\left(4\right)\)
\(\Rightarrow x-2\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Giải
Ta có : \(M=\frac{x+2}{x-2}=\frac{x-2+4}{x-2}\)
\(\Leftrightarrow M=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)
Để M nguyên thì \(\frac{4}{x-2}\)nguyên
\(\Rightarrow4⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Sau đó lập bảng là ra
\(P=\frac{2\left(x-2\right)\left(x+2\right)}{x^2+x+5}.\frac{5\left(x^2+x+5\right)}{\left(x-4\right)\left(x+3\right)}.\frac{\left(x-1\right)\left(x-4\right)}{10\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+3}\)
ĐK: \(x\ne\left\{4;-3;1;2;-2\right\}\)
b, \(P\in Z\Rightarrow\frac{x-1}{x+3}\in Z\Rightarrow x-1⋮\left(x+3\right)\Rightarrow-4⋮\left(x+3\right)\Rightarrow\left(x+3\right)\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
\(\Rightarrow P\in\left\{2;3;5;-3;-1;0\right\}\)
a ) ĐKXĐ : \(x\ne\pm2\)
Ta có : \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x-2}\)
b ) Để \(M\in Z\Leftrightarrow\frac{x+2}{x-2}\in Z\Leftrightarrow x+2⋮x-2\)
\(\Leftrightarrow x-2+4⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\left(x\in Z\Rightarrow x-2\in Z\right)\)
\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)
Vậy \(M\in Z\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)
:D
a. M=\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)
\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\) MC = (x-2)(x+2)
\(M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x+2}{x-2}\)
b. Ta có: \(M=\frac{x+2}{x-2}=\frac{x-2+2+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)
Để M đạt giá trị nguyên thì \(\frac{4}{x-2}\) cũng phải đạt giá trị nguyên
\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x=\left\{3;1;4;0;6;-2\right\}\)
a) \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}\)
b) \(\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)
\(\Rightarrow x-2\inƯ_4\left\{-4;-2;-1;1;2;4\right\}\)
Ta có :
\(x-2=-4\Rightarrow x=-2\) (loại)
\(x-2=-2\Rightarrow x=0\)
\(x-2=-1\Rightarrow x=1\)
\(x-2=1\Rightarrow x=3\)
\(x-2=2\Rightarrow x=4\)
\(x-2=4\Rightarrow x=6\)
Vậy: Các giá trị của x để \(M\in Z\) là:
\(x=0;1;3;4;6\)
Để A là số nguyên thì \(x^2-4+4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)