Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì x và y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
=>\(3y_1=2y_2\)
hay \(\dfrac{y_1}{2}=\dfrac{y_2}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được;
\(\dfrac{y_1}{2}=\dfrac{y_2}{3}=\dfrac{y_1+y_2}{2+3}=\dfrac{15}{5}=3\)
Do đó: \(y_1=6\)
\(k=x_1\cdot y_1=3\cdot6=18\)
=>y=18/x
b: Khi y=23 thì 18/x=23
hay x=18/23
a)Theo tính chất đại lượng tỉ lệ thuận ta có:
\(\frac{y1}{x1}=\frac{y2}{x2}\)\(\Rightarrow\)\(\frac{-3}{x1}\)=\(\frac{-2}{5}\)\(\Rightarrow\)x1=\(\frac{-3.5}{-2}\)=\(\frac{15}{2}\)
b)tương tự ta giải được x2=\(\frac{20}{3}\)
làm câu b cho mk luôn thử xem
câu a mk làm gióng bạn ồi
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
x^2 - y^2 = 5
<=> (x-y)(x+y) =5
=> x-y, x+y là Ư(5) = {-5;-1;1;5)
Bảng giá trị:
Vậy (x,y) = (-3;2); (-3;-2); (3;2); (3;-2)