K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)

\(x^4+x^3+x^2+x+1\) là số chính phương 

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có: 

\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)

TH1: \(4y^2=\left(2x^2+x+2\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)

<=> \(x=0\)thỏa mãn

Th2: \(4y^2=\left(2x^2+x+1\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)

<=> \(x^2-2x-3=0\)

<=> x = 3 hoặc x = -1. thử lại thỏa mãn 

Vậy x = 0 ; x = -1 hoặc x = 3

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

4 tháng 6 2021

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

4 tháng 6 2021

sửa lại khúc nghiệm của pt \(\left(x+1\right)^2-a\) phải khác \(0,-2\)và \(a\ne-1\)

lại giùm mình,mình quên dấu - nên a phía dưới hơi bị lỗi

 

 

28 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)

\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)

\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)

Để \(D\inℤ\)

\(\Leftrightarrow4x+4⋮x^2+5\)

\(\Leftrightarrow4x^2+4x⋮x^2+5\)

\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)

\(\Leftrightarrow16x⋮x^2+5\)

\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)

\(\Leftrightarrow1280⋮x^2+5\)

\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)

Đoạn này bạn làm nốt nhé

28 tháng 2 2020

bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)

k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !! 

MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha