\(\frac{2x^3-6x^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Nguyên Dương Hay Nguyên Âm

4 tháng 12 2018

\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)

Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)

Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)

15 tháng 4 2020

\(3-m=\frac{10}{x+2}\)

\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)

=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}

TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)

TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)

15 tháng 4 2020

bài 3:

\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)

\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)

Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên 

Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)

Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng

x-3-5-115
x-2248
19 tháng 10 2018

a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng: 

2x + 1-5-115
x -3 -1 02

Do vậy \(x=\left\{-3;-1;0;2\right\}\)

19 tháng 10 2018

b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)

\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)

\(=x^2-5x+10+\frac{15}{x+2}\)

Để A nguyên

=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)

=> 15 chia hết cho x + 2

=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}

...

bn tự xét nha

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

24 tháng 8 2017

a/ \(P=\frac{2\left(x^2-4x+4\right)}{\left(x^3-8\right)-\left(6x^2-12x\right)}=\frac{2\left(x-2\right)^2}{\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)}=\frac{2\left(x-2\right)^2}{\left(x-2\right)\left(x^2-4x+4\right)}\)

\(P=\frac{2\left(x-2\right)^2}{\left(x-2\right)\left(x^2-4x+4\right)}=\frac{2\left(x-2\right)^2}{\left(x-2\right)\left(x-2\right)^2}=\frac{2}{x-2}\)

b/ Để P nguyên thì 2 phải chia hết cho x-2

=> x-2=(-2; -1; 1; 2) => x={0; 1; 3; 4}

24 tháng 8 2017

  a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)