Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự

1) Tìm x
a) |3x - 1| + |1 - 3x| = 6
<=> |3x - 1| + |3x - 1| = 6
<=> 2|3x - 1| = 6
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)
b) |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
<=> 2|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Ta có : \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
Để \(\frac{2x-1}{2x+3}\in Z\) thì \(\frac{4}{2x+3}\in Z\)
Suy ra 4 chia hết cho 2x + 3
=> 2x + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> 2x = {-7;-5;-4;-2;-1;1}
=> x = -1

Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)

Ta có
\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)
C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0
Mà x nguyên
=>x=1
Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)
Vậy MAX(C)=19/4 khi x=1
C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất
mà x nguyên=> 4-x=1=> x=3
vậy GTLN của C=13 khi x=1
P = \(\frac{3x-2}{2x+1}\)
P ∈ Z ⇔ (3\(x-2\) )⋮ (2\(x+1\))
[2.(3\(x\) - 2)] ⋮ (2\(x\) + 1)
[3.(2\(x\) + 1) - 7] ⋮ (2\(x\) + 1)
7 ⋮ (2\(x+1\))
(2\(x+1\)) ∈ Ư(7) = {-7; -1 ;1; 7}
Lập bảng ta có:
2\(x\) +1
-7
-1
1
7
-4
-1
0
3
\(x\in Z\)
tm
tm
tm
tm
Theo bảng trên ta có: \(x\in\) {-4; -1; 0; 3}
Vậy \(x\in\) {-4; -1; 0; 3}
ĐKXĐ: \(x<>-\frac12\)
Để p là số nguyên thì 3x-2⋮2x+1
=>6x-4⋮2x+1
=>6x+3-7⋮2x+1
=>-7⋮2x+1
=>2x+1∈{1;-1;7;-7}
=>2x∈{0;-2;6;-8}
=>x∈{0;-1;3;-4}