Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các giá trị nguyên của n để phân số B = 2n+5/ n+3 có giá trị là số nguyên
giải giúp mk với nha
Ta có:
B=2n+5/n+3=2*(n+3)-1/n+3=2-1/n+3
Mà 2 là số nguyên nên B là số nguyên khi 1/n+3 là số nguyên
Lại có n là số nguyên nên 1/n+3 là số nguyên khi n+3 là ước của 1
Ta có Ư(1)\(\in\){1;-1}
Ta có bảng sau:
n+3| 1 |-1 |
n | -2 |-4|
Lại có n là số nguyên nên n\(\in\){-2;-4}
Vậy n\(\in\){-2;-4}
ta có B=\(\frac{2n+6-1}{n+3}\)=2-\(\frac{1}{n+3}\)vậy để B nguyen thi \(\frac{1}{n+3}\) nguyên
n+3la U(1)=1 hoac -1
n+3=1\(\Rightarrow\) n=-1
n+3=-1\(\Rightarrow\) n=-4
1)C=5/1.2+5/2.3+5/3.4+...+5/99.100
C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)
C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)
C=5.(1/1-1/100)
C=5.99/100
C=99/20
2)|x+1|=5
⇒x+1=5 hoặc x+1=-5
x=4 hoặc x=-6
3) Giải:
Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3
2n+5 ⋮ n+3
⇒2n+6-1 ⋮ n+3
⇒1 ⋮ n+3
Ta có bảng:
n+3=-1 ➜n=-4
n+3=1 ➜n=-2
Vậy n ∈ {-4;-2}
a) A là phân số <=>2n-4\(\ne0\)
<=>2n\(\ne\)4
<=>n\(\ne\)2
b)Với n\(\ne2\)
A=\(A=\dfrac{-4n+2}{2n-4}=\dfrac{-4n+8-6}{2n-4}=\dfrac{-2\left(2n-4\right)-6}{2n-4}=-2+\dfrac{-6}{2n-4}\)
A có giá trị nguyên <=>-6 chia hết cho 2n-4
<=>2n-4 là ước của -6
<=>2n-4\(\varepsilon\){-6;-3;-2;-1;1;2;3;6}
2n-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2n | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 |
n | -1 | 0.5 | 1 | 1.5 | 2.5 | 3 | 3.5 | 5 |
TM | KTM | TM | KTM | KTM | TM | KTM | TM |
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh
b, Để a nguyên hay \(2n+2⋮2n-4\Leftrightarrow2n-4+6⋮2n-4\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
Giải:
a) Để A=2n+2/2n-4 là phân số thì n ∉ {-1;1;2;3;5}
b) Để A là số nguyên thì 2n+2 ⋮ 2n-4
2n+2 ⋮ 2n-4
=>(2n-4)+6 ⋮ 2n-4
=>6 ⋮ 2n-4
=>2n-4 ∈ Ư(6)={-1;1;2;-2;3;-3;6;-6}
Vì 2n-4 là số chẵn nên 2n-4 ∈ {2;-2;6;-6}
Ta có bảng giá trị:
+)2n-4=2
n=3
+)2n-4=-2
n=1
+)2n-4=6
n=5
+)2n-4=-6
n=-1
Vậy n ∈ {-1;1;3;5}
Chúc bạn học tốt!
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Để A nguyên thì 1/n+3 nguyên
hay n + 3 thuộc Ư(1) = { 1 ; -1 ]
=> n thuộc { -2 ; -4 } thì A nguyên
Xét phân số \(A=\dfrac{2n+5}{n+3}\)
\(A=\dfrac{2n+6-1}{n+3}=\dfrac{2\left(n+3\right)-1}{n+3}=\dfrac{2\left(n+3\right)}{n+3}-\dfrac{1}{n+3}=2-\dfrac{1}{n+3}\)
Để phân số A có giá trị là số nguyên => \(n+3\inƯ\left(1\right)=\left\{-1,1\right\}\)
- Với n + 3 = -1 => n = -4
- Với n + 3 = 1 => n= -2
Vậy với các giá trị \(n\in\left\{-4,-2\right\}\) thì phân số A có giá trị là số nguyên
\(n\in Z\)
Thì
2n+5n−3=2n−6+11n−3=2+11n−32𝑛+5𝑛−3=2𝑛−6+11𝑛−3=2+11𝑛−3
⇒2n+5n−3⇒2𝑛+5𝑛−3 nguyên thì 11n−311𝑛−3 nguyên
⇔n−3⇔𝑛−3 là ước của 11 là ±1;±11±1;±11
ta có * n−3=1⇔n=4(tmđk)𝑛−3=1⇔𝑛=4(𝑡𝑚đ𝑘)
* n−3=−1⇔n=2(tmđk)𝑛−3=−1⇔𝑛=2(𝑡𝑚đ𝑘)
* n−3=11⇔n=14(tmđk)𝑛−3=11⇔𝑛=14(𝑡𝑚đ𝑘)
* n−3=−11⇔n=−8(tmđk)𝑛−3=−11⇔𝑛=−8(𝑡𝑚đ𝑘)
vậy n=4;n=2;n=14;n=−8