Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Tìm các số nguyên x sao cho các phân số sau có giá trị là một số nguyên:
a)n+4/1
b)n-2/4
c)6/n-1
d)n/n-2
a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên
b) \(\dfrac{n-2}{4}\) là một số nguyên khi:
\(n-2\) ⋮ 4
⇒ n - 2 ∈ B(4)
⇒ n ∈ B(4) + 2
c) \(\dfrac{6}{n-1}\) là một số nguyên khi:
6 ⋮ n - 1
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)
Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:
\(\Rightarrow\text{2}\) ⋮ n - 2
\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0\right\}\)
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
\(M=\frac{6}{n-3}\)
a) Để M không là phân số
\(\Rightarrow n-3=0\)
\(\Rightarrow n=3\)
b) Để M là phân số và có giá trị nguyên
\(\Rightarrow n\ne3\)và \(6⋮n-3\)
\(6⋮n-3\)
\(n-3\in\left\{\pm6;\pm3;\pm2;\pm1\right\}\)
\(\Rightarrow n\in\left\{9;6;5;4;2;1;0;-3\right\}\)
a)Để \(M=\frac{-6}{n-3}\)không phải là p/s thì n-3 = 0 => n=3
Vậy nếu n=3 thì \(M=\frac{-6}{n-3}\)không phải là phân số.
b) Để \(M=\frac{-6}{n-3}\)là phân số thì \(n\ne3\), \(n\in Z\)và \(-6⋮n-3\)
\(-6⋮n-3\Leftrightarrow n-3\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lập bảng
n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 3 | 5 | 1 | 6 | 0 | 9 | -3 |
Vậy nếu \(n\in\left\{0;1;\pm3;4;5;6;9\right\}\),\(n\in Z\)Và \(n\ne3\)thì \(M=\frac{-6}{n-3}\)là phân số và có gtrị nguyên
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
Để \(\frac{3n+4}{n-1}\)là số nguyên thì:
\(3n+4⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\)
nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)
Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự