Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
gọi biểu thức là A ta có :
để A nguyên thì n+9 phải chia hết cho n-6
n+9 : hết cho n-6
=> n - 6 +15 : hết cho n-6
vì n-6 : hết cho n-6
=> 15 : hết cho n-6
=> n-6 thuộc Ư(15)
=> n-6 thuộc {1,3,5,15}
=> n thuộc {7 , 9 , 11, 21}(thõa mãn điều kiện n thuộc N , n>6)
(-36)^1000:(-9)^1000=2^n
[(-36):9]^1000=2^n
4^1000=2^n
2^(2.1000)=2^n
2^2000=2^n
vậy n = 2000
Trung bình cộng là 4,8
=>\(\dfrac{2\cdot6+3\cdot4+9\cdot n+3\cdot10}{6+4+n+3}=4,8\)
=>\(\dfrac{9n+54}{n+13}=4,8\)
=>9n+54=4,8n+62,4
=>4,2n=8,4
=>n=2
\(1,\)\(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
Vậy chữ số tận cùng của A là chữ số 0
\(2,\)\(\frac{x+3}{x-2}\)
\(=\frac{x-2+5}{x-2}\)
\(=\frac{x-2}{x-2}+\frac{5}{x-2}\)
\(=1+\frac{5}{x-2}\)
\(\Rightarrow\)Để \(1+\frac{5}{x-2}\in Z\Rightarrow\frac{5}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
Chia ra 4 trường hợp rồi tự tìm ra x nha