Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)
<=>5-4m<0
<=>m>5/4
b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm
Để PT(2) có duy nhất 1 nghiệm thì:
\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)
c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:
Để PT(2) có 2 nghiệm phân biệt thì:
\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)
Mem đây ko rành lắm sai bỏ qua
PT x 2 − 2 m + 1 x + m 2 − 1 = 0 ( 1 ) có 2 nghiệm phân biệt x 1 , x 2
Theo Vi-et ta có: x 1 + x 2 = 2 m + 1 x 1 x 2 = m 2 − 1
Ta có: x 1 2 + x 2 2 + 8 x 1 x 2 = x 1 + x 2 2 + 6 x 1 x 2 = 2 m + 1 2 + 6 m 2 − 1
= 10 m 2 + 2 5 m + 1 25 − 27 5 = 10 m + 1 5 2 − 27 5
⇒ x 1 2 + x 2 2 + 8 x 1 x 2 ≥ − 27 5
Dấu ‘=’ xảy ra khi m = − 1 5 (thỏa mãn (*))
Vậy x 1 2 + x 2 2 + 8 x 1 x 2 đạt giá trị nhỏ nhất khi m = − 1 5
Đáp án cần chọn là: C
a:
\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)
\(=m^2-2m+1+8m+4=m^2+6m+5\)
Để (1) vô nghiệm thì (m+1)(m+5)<0
hay -5<m<-1
Để (1) có nghiệm thì (m+1)(m+5)>=0
=>m>=-1 hoặc m<=-5
Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0
=>m>-1 hoặc m<-5
b: Để (1) có hai nghiệm phân biệt cùng dương thì
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
Lời giải:
Nếu $m=-3$ thì PT trở thành: $7x^2-3=0$ có nghiệm $x=\pm \sqrt{\frac{3}{7}}$
-------------------------------------------------------------
Nếu $m\neq -3$Đặt $x^2=t$ thì pt trở thành:
$(m+3)t^2-(2m-1)t-3=0(*)$
1. Để pt ban đầu có 1 nghiệm thì PT $(*)$ có nghiệm $t=0$ và nếu có nghiệm còn lại thì nghiệm đó âm.
Để PT $(*)$ có nghiệm $t=0$ thì: $(m+3).0-(2m-1).0-3=0\Leftrightarrow -3=0$ (vô lý)
Do đó không tồn tại $m$ để pt có 1 nghiệm.
2. Để pt ban đầu có 2 nghiệm phân biệt thì PT $(*)$ có 1 nghiệm dương kép hoặc có 1 nghiệm dương và 1 nghiệm âm.
PT có 1 nghiệm dương, 1 nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)> 0\\ P=\frac{-3}{m+3}<0\end{matrix}\right.\)
\(\Leftrightarrow m>-3\)
PT có nghiệm kép dương $\Leftrightarrow \Delta (*)=(2m-1)^2+12(m+3)=0\Leftrightarrow 4m^2+8m+37=0$ (vô lý)
Vậy $m>-3$
3.
PT ban đầu có 4 nghiệm phân biệt khi PT $(*)$ có 2 nghiệm dương phân biệt
Điều này xảy ra khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)>0\\ S=\frac{2m-1}{m+3}>0\\ P=\frac{-3}{m+3}>0\end{matrix}\right.\Leftrightarrow m< -3\)
Trường hợp 1: \(m\ne\pm2\)
Để phương trình có đúng hai nghiệm phân biệt thì phương trình này sẽ có hai nghiệm trái dấu
=>\(m^2-4< 0\)
hay -2<m<2
Trường hợp 2: m=2
Pt sẽ là 1=0(vô lý)
Trường hợp 3: m=-2
=>-4x2+1=0(nhận)
Vậy: -2<=m<2
Ta có: \(\Delta=4m^2-8m+1\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\) \(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2-\sqrt{3}}{2}\\x>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-2m\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
Ta lập được HPT \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\2x_1=x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1=1-2m\\x_2=2x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-2m}{3}\\x_2=\dfrac{2-4m}{3}\end{matrix}\right.\)
Kết hợp với (2), ta được:
\(\dfrac{8m^2-12m+2}{9}=m\) \(\Leftrightarrow...\)
lớp mấy
Đặt \(a=x^2\left(a>=0\right)\)
pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)
\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
a: Để pt vô nghiệm thì -4m+5<0
hay m>5/4
b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0
hay m<5/4
c: Để pt có 4 nghiệm phân biệt thì
\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)