K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

a/ Đk: (D) //(D'') là:

\(m=3m-4\)

<=> \(2m=4\)<=> m = 2.

b/ ĐK: ( D) cắt (D'') là:

\(m\ne3m-4\Leftrightarrow m\ne2\)

c) ĐK để (D) vuông (D''0 là:

\(m.\left(3m-4\right)=-1\)

<=> \(3m^2-4m+1=0\)

<=> m =1 hoặc m=1/3

20 tháng 12 2017

a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'

27 tháng 10 2015

a) Để 2 đường thẳng song song thì a=a',tương đương với 2=m-1. Vậy m=3 

b)Để 2 đường thẳng cắt nhau thì a#a',tương đương 2#m-1. Vậy m#3

c)Để 2 đường thẳng vuông góc với nhau thì a.a'=1,tương đương 2.(m-1)=1.Vậy m=3/2

2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)

9 tháng 11 2015

1) Không thể trùng nhau vì b \(\ne\)b'

2)

a) song song khi \(\int^{m-1=3}_{2\ne-1}\Rightarrow m=4\)

b) cắt nhau a\(\ne\)a' => m\(\ne\)4

c) vuông góc với nhau khi a.a' =-1 =>3(m-1) =-1 => m-1 =-1/3 => m = 1 - 1/3 =2/3