Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: pi<x<3/2pi
=>sinx<0 và cosx<0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{9}{4}=\dfrac{13}{4}\)
=>\(cos^2x=\dfrac{4}{13}\)
=>\(\left\{{}\begin{matrix}cosx=-\dfrac{2}{\sqrt{13}}\\sin^2x=\dfrac{9}{13}\end{matrix}\right.\)
mà sin x<0
nên \(sinx=-\dfrac{3}{\sqrt{13}}\)
\(cotx=1:\dfrac{3}{2}=\dfrac{2}{3}\)
b: 0<x<90 độ
=>sin x>0 và cosx>0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(cos^2x=\dfrac{3}{4}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>\(sinx=\dfrac{1}{2}\)
cotx=1:căn 3/3=3/căn 3=căn 3
c: 3/2pi<x<2pi
=>sinx<0 và cosx>0
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(sin^2x=\dfrac{3}{4}\)
mà sin x<0
nên \(sinx=-\dfrac{\sqrt{3}}{2}\)
\(cos^2x=1-\dfrac{3}{4}=\dfrac{1}{4}\)
mà cosx>0
nên cosx=1/2
1.
\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)
\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)
\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)
\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)
2.
Đề bài thiếu, cos?x
Và x thuộc khoảng nào?
3.
\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)
\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)
\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)
4.
\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)
\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
\(a,,0< x< \dfrac{\pi}{2}\\ \Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx< 0\end{matrix}\right.\\ 1+tan^2x=\dfrac{1}{cos^2x}\\ \Rightarrow cos^2x=\dfrac{1}{4}\\ \Rightarrow cosx=-\dfrac{1}{2}\)
\(sin^2x+cos^2x=1\\ \Rightarrow sin^2x=1-\left(-\dfrac{1}{2}\right)^2\\ =\dfrac{3}{4}\\ \Rightarrow sinx=\dfrac{\sqrt{3}}{2}\)
\(tanx.cotx=1\\ \Rightarrow cotx=1:\sqrt{3}\\ =\dfrac{\sqrt{3}}{3}\)
\(b,\dfrac{3\pi}{2}< x< 2\pi\\ \Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx>0\end{matrix}\right.\)
\(tanx.cotx=1\\ \Rightarrow tanx=-1\)
\(1+cot^2x=\dfrac{1}{sin^2x}\\ \Rightarrow sin^2x=\dfrac{1}{2}\\ \Rightarrow sinx=-\dfrac{\sqrt{2}}{2}\\ cos^2x+sin^2x=1\\ \Rightarrow cos^2x=\dfrac{1}{2}\\ \Rightarrow cosx=\dfrac{\sqrt{2}}{2}\)
a)
$cos\left(x+\frac{\pi }{6}\right)=\frac{4}{5}cos\left(\frac{\pi }{6}\right)-\left(-\frac{3}{5}\right)sin\left(\frac{\pi }{6}\right)=\frac{4}{5}.\frac{\sqrt{3}}{2}+\frac{3}{5}.\frac{1}{2}=\frac{3+4\sqrt{3}}{10}$
b) $tan(x + \frac{\pi}{4}) = \frac{-3/5 + 1}{1 + (-3/5)(1)} = \frac{-2/5}{2/5} = -1$
3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)
a: -pi/2<a<0
=>sin a<0
=>sin a=-1/căn 5
tan a=-1/2
cot a=-2
b: pi/2<x<pi
=>cosx<0
=>cosx=-4/5
=>tan x=-3/4
cot x=-4/3
c: -pi<x<-pi/2
=>cosx<0 và sin x<0
1+tan^2x=1/cos^2x
=>1/cos^2x=1+16/25=41/25
=>cosx=-5/căn 41
sin x=-6/căn 41
cot x=5/4
g: 180 độ<x<270 độ
=>cosx <0
=>cosx=-4/5
tan x=3/4
cot x=4/3