Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
Ta có:
\(x^2+1=x^2+xy+yz+zx\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự:
\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)
\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
TH1: x,y,z <0
\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)
TH2: x,y,z>0
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
Bài này hình như x,y,z>0
Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)
Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)
Cộng từng vế, ta có:
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)
\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)
Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)
Nếu x,y,z\(\ge0\Rightarrow A=2\)
Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)
\(S^2=\left(\left|x\right|+\left|y\right|+\left|x\right|\right)^2=x^2+y^2+z^2+2\left(\left|x\right|\left|y\right|+\left|y\right|\left|z\right|+\left|z\right|\left|x\right|\right)\)
\(S^2=x^2+y^2+z^2+\left|x\right|\left(\left|y\right|+\left|z\right|\right)+\left|y\right|\left(\left|z\right|+\left|x\right|\right)+\left|z\right|\left(\left|x\right|+\left|y\right|\right)\)
Áp dụng BĐT chứa dấu GTTĐ ta có:
\(\left|y\right|+\left|z\right|\ge\left|y+z\right|=\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|\left(\left|y\right|+\left|z\right|\right)\ge z^2\)
Cmtt:\(\left|y\right|\left(\left|z\right|+\left|x\right|\right)\ge y^2,\left|z\right|\left(\left|x\right|+\left|y\right|\right)\ge z^2\)
Vì vậy \(S^2\ge2\left(x^2+y^2+z^2\right)\Rightarrow S^2\ge16\Rightarrow S\ge4\)
Dấu "=" xảy ra khi (x;y;z)=(2;-2;0) và hoán vị của nó, ta có S=4
Okey
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(z+x\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự thì ta có:
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P=2
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
\(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{\left(x+y+z\right)^2}=0\)
\(\left(2x-y\right)^2+\left(y-2\right)^2+\left|x+y+z\right|=0\)
\(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left|x+y+z\right|\ge0\end{cases}\Rightarrow}\left(2x-y\right)^2+\left(y-2\right)^2+\left|x+y+z\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-y\right)^2=0\\\left(y-2\right)^2=0\\x+y+z=0\end{cases}\hept{\begin{cases}2x=y\\y=2\\x+y+z=0\end{cases}\hept{\begin{cases}x=1\\y=2\\1+2+z=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=-3\end{cases}}}}}\)
vậy pt có nghiệm lần lượt (x,y,z) là (1,2,-3)