K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

a) x2 + 5x = x(x + 5) < 0 khi x và x + 5 khác dấu mà x < x + 5 nên x < 0 ; x + 5 > 0

=> -5 < x < 0 (x\(\in Q\))

b) 3(2x + 3)(3x - 5) < 0 khi 2x + 3 và 3x - 5 khác dấu.Ta có :

\(\hept{\begin{cases}2x+3< 0\Rightarrow2x< -3\Rightarrow x< \frac{-3}{2}\\3x-5>0\Rightarrow3x>5\Rightarrow x>\frac{5}{3}\end{cases}}\)(vô lý)

-\(\hept{\begin{cases}2x+3>0\Rightarrow2x>-3\Rightarrow x>\frac{-3}{2}\\3x-5< 0\Rightarrow3x< 5\Rightarrow x< \frac{5}{3}\end{cases}}\)=> \(\frac{-3}{2}< x< \frac{5}{3}\left(x\in Q\right)\)

\(x^2+5x< 0\)

\(\Rightarrow x\left(x+5\right)< 0\)

Th1 : \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-5\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -5\end{cases}}}\)

Câu b tương tự nha

19 tháng 2 2016

a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên

và x2 luôn tự nhiên => 5x âm

=>  GTTĐ của x2 < GTTĐ của 5x

=> x < 5

=> x thuộc {4; 3; 2; 1;....}

Vậy....

15 tháng 7 2016

câu hỏi này tôi xem xét lại sau

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

a: A>0

=>\(x^2-3x>0\)

=>x(x-3)>0

TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)

=>x<0

d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)

=>\(x\left(x+\dfrac{5}{2}\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)

=>Loại

Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< 0\)

e: ĐKXĐ: x<>2

Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)

=>2<x<=3

g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)

=>\(\left(2x-1\right)\left(2x-3\right)>0\)

TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)

=>\(x>\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)

=>\(x< \dfrac{1}{2}\)

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )