K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Đặt f(x) =  x 3  – 3 x 2  (C1)

y = m ( C 2 )

Phương trình  x 3  – 3 x 2  – m = 0 có ba nghiệm phân biệt khi và chỉ khi ( C 1 ) và ( C 2 ) có ba giao điểm.

Ta có:

f′(x) = 3 x 2  − 6x = 3x(x − 2) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra ( C 1 ) và ( C 2 ) cắt nhau tại 3 điểm khi -4 < m < 0

Kết luận : Phương trình   x 3  – 3 x 2  – m = 0 có ba nghiệm phân biệt với những giá trị của m thỏa mãn điều kiện: -4 < m < 0.

1 tháng 5 2019

Đặt f(x) = x 3  – 3 x 2  (C1)

y = m (C2)

Phương trình  x 3  – 3 x 2  – m = 0 có ba nghiệm phân biệt khi và chỉ khi (C1) và (C2) có ba giao điểm.

Ta có:

f′(x) = 3 x 2  − 6x = 3x(x − 2) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra (C1), (C2) cắt nhau tại 3 điểm khi -4 < m < 0

Kết luận : Phương trình x 3  – 3 x 2  – m = 0 có ba nghiệm phân biệt với những giá trị của m thỏa mãn điều kiện: -4 < m < 0.

18 tháng 3 2018

Đáp án D

Từ đồ thị hàm số đã cho (như hình vẽ) ta suy ra đồ thị của hàm số

 

 

Từ đó ta có kết quả thỏa mãn yêu cầu bài toán

:  

11 tháng 12 2019

x 3  – 3 x 2 – m = 0 ⇔  x 3  – 3 x 2  = m x 3 – 3 x 2  – m = 0 ⇔  x 3  – 3 x 2  = m (∗)

Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.

2 tháng 4 2019

Chọn D.

Số nghiệm của phương trình f(x) =  m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Dựa vào đồ thị, điều kiện để phương trình có 4 nghiệm phân biệt là -4 < m < 0.

4 tháng 4 2017

Đáp án C

Phương pháp:

Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)

27 tháng 2 2019

26 tháng 6 2017

Đáp án B

Phương pháp:

+) Thế vào phương trình, lập phương hai vế, cô lập m, đưa phương trình về dạng m = f(t)

+) Khảo sát và lập BBT của hàm số y = f(t), t ≥ 0 Biện luận để phương trình có 2 nghiệm phân biệt.

 

Cách giải:

Ta có:

Bảng biến thiên:

Để phương trình có 3 nghiệm phân biệt t ≥ 0 thì 

⇒ m ∈ 8 ; 9 ; 10 ; 11 ; 12 ; 13

⇒ Có 6 giá trị nguyên của m thỏa mãn.

13 tháng 10 2019