\(\left(x+1\right)^2\)\(\left(y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

a) Để \(\left(x+1\right)^2\left(y-6\right)=0\)

thì \(\orbr{\begin{cases}x+1=0\\y^2-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=\sqrt{6}\end{cases}}}\)

b) \(x^2-12x+7>7\Leftrightarrow x^2-12x>0\)

  \(\Leftrightarrow x\left(x-12\right)>0\)

  \(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\x-12>0\end{cases}}\\\hept{\begin{cases}x< 0\\x-12< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>12\\x< 0\end{cases}}\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

22 tháng 12 2018

a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)

\(\Leftrightarrow x\ge0\)

b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :

TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)

TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)

c) Tương tự câu b)

19 tháng 6 2017

a) Ta có ; \(x^2\ge0\forall x\in R\)

Nên A dương khi 4x \(\ge0\forall x\in R\) 

=> \(x\ge0\)

Vậy A dương khi \(x\ge0\)

28 tháng 8 2017

Đồ thị hàm số đi qua O (0; 0)

Cho x = 2 y = 1,5. 2 = 3

Ta có: A(2; 3)

Vẽ đường thẳng OA ta có đồ thị hàm số.

a) f(1) = 1,5. 1 = 1,5

f(-1) = 1,5. (-1) = -1,5

f(-2) = 1,5. (-2) = -3

f(2) = 1,5. 2 = 3

f(0) =0

b)\(y=-1\Rightarrow x=\dfrac{-1}{1,5}=-\dfrac{2}{3}\)

\(y=0\Rightarrow x=\dfrac{0}{1,5}=0\)

\(y=4,5\Rightarrow x=\dfrac{4,5}{1,5}=3\)

c) y > 0 1,5x > 0 x > 0

y < 0 1,5x < 0 x < 0

28 tháng 8 2017

Đồ thị hàm số đi qua O (0; 0)

Cho x = 2 ⇒⇒ y = 1,5. 2 = 3

Ta có: A(2; 3)

Vẽ đường thẳng OA ta có đồ thị hàm số.

a) f(1) = 1,5. 1 = 1,5

f(-1) = 1,5. (-1) = -1,5

f(-2) = 1,5. (-2) = -3

f(2) = 1,5. 2 = 3

f(0) = 0

b)y=−1⇒x=\(\dfrac{-1}{1,5}=-\dfrac{2}{3}\)

b)y=0⇒x==\(\dfrac{0}{1,5}=0\)

y=4,5⇒x=\(\dfrac{4,5}{1,5}=3\)

c) y > 0 1,5x > 0 x > 0

y < 0 1,5x < 0 x < 0


Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)