Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x^2+1\right)=0\)
=> \(\left(x+1\right)=0\) hoac \(\left(x^2+1\right)=0\)
\(x+1=0\Rightarrow x=-1\)
\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x=-1\)
hok tot
(x+1)(x2+1)=0
Ta có: x2+1 >0 với mọi x
=> Để (x+1)(x2+1)=0
=> x+1=0
=> x=-1
a.\(16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=4^2\)
\(\Leftrightarrow x=\pm4\)
b.\(\left(x+1\right)^2+\left(2y-3\right)^{10}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(2y-3\right)^{10}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2y-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left(x-2\right)^2+\left(y+3\right)^2\ge0\forall x;y\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy để biểu thức cs giá trị = 0 thì x=2, y=-3
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
a) \(\left(x+1\right)\left(x^2+1\right)=0\)
Vì \(\left(x^2+1\right)>0\forall x\)
\(\Rightarrow x=-1\)
b) \(5y^2-20=0\)
\(y^2-4=0\)
\(\left(y-2\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
a, Ta có : \(\left(x+1\right)\left(x^2+1>0\right)=0\Leftrightarrow x=-1\)
b, \(5y^2=20\Leftrightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
c, \(\left|x-2\right|-1=0\Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
d, \(\left|y-2\right|+5=0\)( vô lí )
Vậy ko có gtr y để bth bằng 0
Các bạn tham khảo nhé.
ta có (x+1)^2>=0 với mọi x
lại có |y-1|>=0 với mọi Y
nên để (x+1)^2+2|y-1| = 0 thì
(x+1)^2 =0 và |y-1| =0
=> x=-1 và y=1
a, \(16-x^2=0\Leftrightarrow x=\pm4\)
b, Sửa đề: \(\left(x+1\right)^2+2\left|x-1\right|=0\)
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\2\left|x-1\right|=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\x=1\end{cases}}\)
c, Sửa đề: \(\left(x+1\right)^2+\left(2y-3\right)^{10}\)
Giải tương tự câu c ta được \(\hept{\begin{cases}x=-1\\y=\frac{3}{2}\end{cases}}\)
d, Tương tự vậy, ta cũng tìm được \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Sao em viết chữ giống anh mà bố mẹ em bảo xấu mà người khác mà viết thế bố mẹ em bảo đẹp thế là thế nào nhỉ?
(x+1)2(y2-6)=0
=> \(\orbr{\begin{cases}\left(x+1\right)^2=0\\y^2-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\y^2=6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\y=\pm\sqrt{6}\end{cases}}}\)
vậy........
aaaaaaaaa