\(y=ax+b\) đi qua điểm A(1;-2) và điểm B thuộc P...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


4 tháng 6 2017

Câu 1: để hàm số có đồ thị hàm số đi qua điểm A và B nên tọa độ của A,B thỏa mãn đồ thị nên ta có hệ

\(\hept{\begin{cases}-2a+b=5\\a+b=-4\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=-1\end{cases}}\)

Câu 2 :

  1. để hàm số luôn nghịch biến thì hệ số góc của đường thẳng nhỏ hơn 0 nên : \(2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
  2. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(\frac{-2}{3}\)tức giao điểm có tọa độ \(\left(-\frac{2}{3};0\right)\)nên có phương trình :\(0=\frac{-2\left(2m-1\right)}{3}+m+2\Leftrightarrow-4m+2+3m+6=0\Leftrightarrow m=8\)

Tham khảo:

undefined

undefined

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

c. Giao điểm thứ hai của đồ thị có hoành độ bằng -3 và tung độ bằng 9. Ta có : B(-3 ; 9).