Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://lazi.vn/edu/exercise/biet-rang-da-thuc-px-chia-het-cho-da-thuc-x-a-khi-va-chi-khi-pa-0-hay-tim-cac-gia-tri-cua-m-va-n
c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\);
\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)
Để Min P = 1 và Max P = 4 thì
\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)
(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3)
(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4)
Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4
Vậy \(P=\frac{-4x+3}{x^2+1}\)
ĐK \(x\ge y\)
Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\)
HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)
Giải (1) ; kết hợp điều kiện => b = 1
=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4)
\(\dfrac{H\left(x\right)}{x-1}=\dfrac{ax^3+ax^2+x^2-4bx-3x+5b}{x-1}\)
\(=\dfrac{ax^3-ax^2+x^2\cdot\left(2a+1\right)-2ax-x+\left(2a-4b-2\right)x-2a+4b+2+b-2+2a}{x-1}\)
\(=ax^2+x\left(2a+1\right)+\left(2a-4b-2\right)+\dfrac{b+2a-2}{x-1}\)
\(\dfrac{H\left(x\right)}{x+2}\)
\(=\dfrac{ax^3+\left(a+1\right)x^2-\left(4b+3\right)x+5b}{x+2}\)
\(=\dfrac{ax^3+2ax^2+x^2\left(-a+1\right)+x\cdot\left(-2a+2\right)+[-x\left(-2a+2\right)-\left(4b+3\right)x]+5b}{x+2}\)
\(=ax^2+\left(-a+1\right)\cdot x+\dfrac{\left[2ax-2x-4bx-3x\right]+5b}{x+2}\)
\(=ax^2-ax+x+\dfrac{-5x+2ax-4bx-10+4a-8b+10-4a+13b}{x+2}\)
\(=ax^2-ax+x+\left(2a-4b-5\right)+\dfrac{-4a+13b+10}{x+2}\)
Theo đề, ta có hệ:
-4a+13b=-10 và b+2a=2
=>a=6/5; b=-2/5