Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì \(\frac{2a-3}{4}\in N\)
Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0
ta có: \(\frac{2a-3}{4}=0\)
\(\Rightarrow2a-3=0\)
\(\Rightarrow2a=3\)
\(\Rightarrow a=\frac{3}{2}\)
b) vì \(\frac{5}{3a-7}\in N\)
Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0
ta có: \(\frac{5}{3a-7}=0\)
\(\Rightarrow3a-7=\frac{5}{0}\)(vô lí vì mẫu số luôn khác 0)
VẬY \(a=\varnothing\)
Để \(n\in N\Leftrightarrow6n-3\) chia hết \(4n-6\)
\(\Leftrightarrow6n-3-\left(4n-3-3\right)\) chia hết cho \(4n-6\)
Ta có :
\(A=\frac{8n-3}{2n+1}=\frac{8n+4-7}{2n+1}=\frac{8n+4}{2n+1}-\frac{7}{2n+1}=\frac{4\left(2n+1\right)}{2n+1}-\frac{7}{2n+1}=4-\frac{7}{2n+1}\)
Để A đạt GTNN thì \(\frac{7}{2n+1}\) phải đạt GTLN hay nói cách khác \(2n+1>0\) và đạt GTNN
\(\Rightarrow\)\(2n+1=1\)
\(\Rightarrow\)\(2n=0\)
\(\Rightarrow\)\(n=\frac{0}{2}\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=\frac{8n-3}{2n+1}=\frac{8.0-3}{2.0+1}=\frac{0-3}{0+1}=\frac{-3}{1}=-3\)
Vậy \(A_{min}=-3\) khi \(n=0\)
Chúc bạn học tốt ~
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2 n = 2
(khi đó phân số có GTLN là 7/2 + 5/2 = 6).
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
Lời giải:
Để PS $\frac{2a-3}{4}$ dương và có giá trị nhỏ nhất thì $2a-3>0$ và nhỏ nhất
Vì $2a-3$ nguyên nên $2a-3$ dương và có giá trị nhỏ nhất khi $2a-3=1$
$\Rightarrow a=2$
Vậy $\frac{2a-3}{4}$ nhỏ nhất bằng $\frac{1}{4}$