K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

a) \(14x-56=0\)

\(\Leftrightarrow14=0+56=56\)

\(\Leftrightarrow x=4\)

b )\(\frac{1}{2}-\frac{1}{3}x=0\)

\(\Leftrightarrow-\frac{1}{3}x=0-\frac{1}{2}=-\frac{1}{2}\)

\(\Leftrightarrow x=\frac{3}{2}\)

c )\(16-x^2=0\)

\(\Leftrightarrow-x^2=0-16=-16\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow\left[\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

d) \(\left|x-2\right|+\left(y+3\right)^2\)

\(\Leftrightarrow\left\{\begin{matrix}\left|x-2\right|=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

e) \(\left(x+1\right)^2+2\left|y-1\right|=0\)

\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)^2=0\\2\left|y-1\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

7 tháng 2 2017

a)

\(14x-56=0\)

\(\Leftrightarrow x=4\)

Vậy x=4

b)

\(\frac{1}{2}-\frac{1}{3x}=0\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{3}.x\)

\(\Leftrightarrow x=\frac{3}{2}\)

c)

\(16-x^2=0\)

\(\Leftrightarrow16=x^2\)

\(\Leftrightarrow\left[\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

Vậy x = 4 ; x = - 4

d)

\(\left\{\begin{matrix}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)\(\left(\forall x;y\right)\)

\(\Rightarrow\left\{\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Vậy x = 2 ; x = - 2

e )

Tương tự câu d)

13 tháng 10 2016

bn đăng từng câu 1 thôi nhe

 

13 tháng 10 2016

anh tl từng câu một cũng đc mà

10 tháng 9 2018

\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)

Nếu  \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0 

Vậy nên A \(>\) 0,

Nếu  \(-17\le x\le-13\),  ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)

Nếu  \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)

Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)

Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)

25 tháng 8 2016

a)\(\left|x+\frac{1}{5}\right|-4=-2\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)

\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)

Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)

Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)

25 tháng 8 2016

phần a dấu + fai là dấu =

25 tháng 1 2017

a) Ta có: \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|x-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}=\frac{11}{20}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

b) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{3}\right|+\left|z-\frac{1}{2}\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{2}{3}\right|=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{2}{3}=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{2}{3}\\z=\frac{-1}{2}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{2}{3};z=\frac{-1}{2}\)

d) \(\left|x+1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=\pm1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

17 tháng 2 2017

thiếu phần c) rồi bạn ơi

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bài 1:

a)

\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)

\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)

\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)

b)

\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)

\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)

c)

\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)

\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bài 2:

a)

\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)

b)

\((\frac{1}{2}-x)^2=(-2)^2=2^2\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)

c)

\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)

\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)

d)

\(3^{2x+1}=81=3^4\)

\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)

14 tháng 10 2016

e)

=> (x-2) . (x+7) = ( x-1 ) . ( x +4)

=> x2 +7x - 2x -14 = x2 - x + 4x - 4

x2 + 5x - 14 = x2 + 3x - 4

=> 5x - 14  = 3x - 4

=> 5x  - 3x = 14-4

=> 2x         = 10 => x = 10 : 2 => x = 5

c)

=>( x-1) . 7 = ( x + 5 ) . 6

=> 7x - 7 = 6x + 30

=> 7x - 6x=  30 + 7

=> x         = 37

13 tháng 10 2016

a,x=\(\frac{5}{2}\)

b,x=\(\frac{13}{176}\)

c,x=37

d, x=\(\frac{12}{5}\)

e, x=5

NV
8 tháng 4 2019

\(A=\left|-x-2011\right|+\left|x+2012\right|\ge\left|-x-2011+x+2012\right|=1\)

\(\Rightarrow A_{min}=1\) khi \(\left\{{}\begin{matrix}x+2011\le0\\x+2012\ge0\end{matrix}\right.\) \(\Rightarrow-2012\le x\le-2011\)

Bài 2:

\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}y-x=-z\\x-z=y\\y+z=x\end{matrix}\right.\)

\(B=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{y+z}{z}\right)=\frac{y.\left(-z\right).x}{xyz}=-1\)

Bài 3:

Gọi chiều dài 3 cạnh tương ứng là \(a,b,c\)

\(\Rightarrow4a=12b=cx\Rightarrow\left\{{}\begin{matrix}a=\frac{cx}{4}\\b=\frac{cx}{12}\end{matrix}\right.\)

Mặt khác theo BĐT tam giác ta có: \(a-b< c< a+b\)

\(\Rightarrow\frac{cx}{4}-\frac{cx}{12}< c< \frac{cx}{4}+\frac{cx}{12}\Rightarrow\frac{x}{4}-\frac{x}{12}< 1< \frac{x}{4}+\frac{x}{12}\)

\(\Rightarrow\frac{x}{6}< 1< \frac{x}{3}\) \(\Rightarrow3< x< 6\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)