Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)
Nếu \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0
Vậy nên A \(>\) 0,
Nếu \(-17\le x\le-13\), ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)
Nếu \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)
Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)
Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)
a)\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)
Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)
Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)
a) Ta có: \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|x-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}=\frac{11}{20}\end{matrix}\right.\)
Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)
b) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{3}\right|+\left|z-\frac{1}{2}\right|=0\)
\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{2}{3}\right|=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{2}{3}=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{2}{3}\\z=\frac{-1}{2}\end{matrix}\right.\)
Vậy \(x=\frac{-3}{4};y=\frac{2}{3};z=\frac{-1}{2}\)
d) \(\left|x+1\right|+\left|x^2-1\right|=0\)
\(\Rightarrow\left[\begin{matrix}\left|x+1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=\pm1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\)
Bài 1:
a)
\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)
\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)
\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)
b)
\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)
\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)
c)
\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)
\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)
Bài 2:
a)
\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)
b)
\((\frac{1}{2}-x)^2=(-2)^2=2^2\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)
c)
\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)
\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)
d)
\(3^{2x+1}=81=3^4\)
\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)
e)
=> (x-2) . (x+7) = ( x-1 ) . ( x +4)
=> x2 +7x - 2x -14 = x2 - x + 4x - 4
x2 + 5x - 14 = x2 + 3x - 4
=> 5x - 14 = 3x - 4
=> 5x - 3x = 14-4
=> 2x = 10 => x = 10 : 2 => x = 5
c)
=>( x-1) . 7 = ( x + 5 ) . 6
=> 7x - 7 = 6x + 30
=> 7x - 6x= 30 + 7
=> x = 37
a,x=\(\frac{5}{2}\)
b,x=\(\frac{13}{176}\)
c,x=37
d, x=\(\frac{12}{5}\)
e, x=5
\(A=\left|-x-2011\right|+\left|x+2012\right|\ge\left|-x-2011+x+2012\right|=1\)
\(\Rightarrow A_{min}=1\) khi \(\left\{{}\begin{matrix}x+2011\le0\\x+2012\ge0\end{matrix}\right.\) \(\Rightarrow-2012\le x\le-2011\)
Bài 2:
\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}y-x=-z\\x-z=y\\y+z=x\end{matrix}\right.\)
\(B=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{y+z}{z}\right)=\frac{y.\left(-z\right).x}{xyz}=-1\)
Bài 3:
Gọi chiều dài 3 cạnh tương ứng là \(a,b,c\)
\(\Rightarrow4a=12b=cx\Rightarrow\left\{{}\begin{matrix}a=\frac{cx}{4}\\b=\frac{cx}{12}\end{matrix}\right.\)
Mặt khác theo BĐT tam giác ta có: \(a-b< c< a+b\)
\(\Rightarrow\frac{cx}{4}-\frac{cx}{12}< c< \frac{cx}{4}+\frac{cx}{12}\Rightarrow\frac{x}{4}-\frac{x}{12}< 1< \frac{x}{4}+\frac{x}{12}\)
\(\Rightarrow\frac{x}{6}< 1< \frac{x}{3}\) \(\Rightarrow3< x< 6\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
a) \(14x-56=0\)
\(\Leftrightarrow14=0+56=56\)
\(\Leftrightarrow x=4\)
b )\(\frac{1}{2}-\frac{1}{3}x=0\)
\(\Leftrightarrow-\frac{1}{3}x=0-\frac{1}{2}=-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{3}{2}\)
c )\(16-x^2=0\)
\(\Leftrightarrow-x^2=0-16=-16\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)
d) \(\left|x-2\right|+\left(y+3\right)^2\)
\(\Leftrightarrow\left\{\begin{matrix}\left|x-2\right|=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
e) \(\left(x+1\right)^2+2\left|y-1\right|=0\)
\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)^2=0\\2\left|y-1\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
a)
\(14x-56=0\)
\(\Leftrightarrow x=4\)
Vậy x=4
b)
\(\frac{1}{2}-\frac{1}{3x}=0\)
\(\Leftrightarrow\frac{1}{2}=\frac{1}{3}.x\)
\(\Leftrightarrow x=\frac{3}{2}\)
c)
\(16-x^2=0\)
\(\Leftrightarrow16=x^2\)
\(\Leftrightarrow\left[\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy x = 4 ; x = - 4
d)
Vì \(\left\{\begin{matrix}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)\(\left(\forall x;y\right)\)
\(\Rightarrow\left\{\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy x = 2 ; x = - 2
e )
Tương tự câu d)