\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

a: \(\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)

\(=x^4+bx^3+cx^2-2x^3-2b\cdot x^2-2x\cdot c+x^2+bx+c\)

\(=x^4+x^3\left(b-2\right)+x^2\left(c-2b+1\right)+x\left(-2+b\right)+c\)

Theo đề, ta có: b-2=-2; c-2b+1=2; b-2=-2; a=c

=>b=0; c=1; a=c=1

b: (x-2)(x^2+bx+c)+a

\(=x^3+bx^2+cx-2x^2-2bx-2c+a\)

\(=x^3+x^2\left(b-2\right)+x\left(c-2b\right)-2c+a\)

Theo đề ta có: b-2=3; c-2b=-1; -2c+a=-3

=>b=5; c=-1+2b=-1+10=9; a=-3+2c=-3+2*9=15

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

21 tháng 2 2018

a) @Cold Wind

2x^4 -x^3 -6x^2 -x+2 =0

[2 x^4 -4x^3 ]+3x^3 -6x^2 -x+2 =0

(x-2)(2x^3 +3x^2 -1) =0

(x-2)(2x^3 + 2x^2 +x^2 -1) =0

(x-2) [(x+1)(2x^2 +(x -1) ] =0

(x-2) [(x+1)(2x^2 + x - 1 ] =0

(x-2) (x+1)(x+1)(2x -1) =0

21 tháng 2 2018

ăn gian >.< !!! minh nà, ý tớ là nếu như bậc 4 nghiệm xấu thì làm như nào zợ??

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn