Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{2ab1}=13\times\overline{c2d}\)
\(0\le ab\le99\)\(\Rightarrow\overline{c2d}\le230\Rightarrow\orbr{\begin{cases}c=1\left(l\right)\\c=2\left(tm\right)\end{cases}}\)
\(\Rightarrow\overline{2ab1}=13\cdot\overline{22d}\)
d | \(13\cdot\overline{22d}\) | \(\overline{2ab1}\Rightarrow\overline{ab}\) |
1 | 2873 | L |
2 | 2886 | L |
3 | 2899 | L |
4 | 2912 | L |
5 | 2925 | L |
6 | 2938 | L |
7 | 2951 | 2951 nên ab=95 |
8 | 2964 | L |
9 | 2977 | L |
Vậy số a=9 b=5 c=2 d=7
Ta có CCCCCCCCC = C .111111111 = 12345679 . C . 9
Ta tìm cách phân tích số CCCCCCCCC thành tích của hai số ABCDEFGH (Số có 8 chữ số) và AK (Số có 2 chữ số).
Xét lần lượt C = 1 ; 2; ...; 9 như sau:
- Với C = 1: Ta có CCCCCCCCC = = 111111111 = 12345679 . 9 là cách phân tích duy nhất thành một số có 8 chữ số với số có 1 chữ số. Vậy không thỏa mãn.
- Với C = 2: Ta có CCCCCCCCC = 222222222 = 12345679 . 2 . 9 = 12345679 . 18 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì C trong ABCDEFGH bằng 3 trong khi C trong CCCCCCCCC lại bằng 2)
- Với C = 3: Ta có CCCCCCCCC = 333333333 = 12345679 . 3 . 9 = 12345679 . 27 là cách phân tích duy nhất thành một số có 8 chữ số với số có 2 chữ số. Tuy nhiên không phải dạng ABCDEFGH x AK = CCCCCCCCC (vì A trong ABCDEFGH bằng 1 trong khi A trong AK lại bằng 2)
- Với C = 4: Ta có CCCCCCCCC = 444444444 = 12345679 . 4 . 9 = 12345679 . 36 = 24691358 x 18. Có hai cách phân tích duy số 444444444 là 12345679 x 36 và 24691358 x 18, cả hai cách đều không thỏa mãn dạng ABCDEFGH x AK = CCCCCCCCC
Cứ xét tiếp tục ta sẽ thấy với C = 6 thì:
666666666 = 12345679 x 6 x 9 = 12345679 x 54 = 24691358 x 27 = 37037037 x 18
Có 3 cách biểu diễn số 666666666 thành tích của số có 8 chữ số và số có 2 chữ số. Chỉ có duy nhất cách 666666666 = 24691358 x 27 là thỏa mãn dạng CCCCCCCCC = ABCDEFGH x AK.
Vậy phép nhân thỏa mãn điều kiện bài toán là: 24691358 x 27 = 666666666.