Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)
Vì \(x^2+y^2+2\ge0\) nên để \(\frac{1}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Ta có: \(x^2+y^2\ge0\) ( mỗi số hạng \(\ge0\) )
\(\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{1}{x^2+y^2+2}\le\frac{1}{2}=0,5\)
\(\Rightarrow B=1+\frac{1}{x^2+y^2+2}\le1+0,5=1,5\)
\(\Rightarrow B=\frac{x^2+y^2+3}{x^2+y^2+2}\le1,5\)
Vậy \(MAX_B=1,5\) khi x = y = 0
Câu 2)
Giả sử tồn tại \(n\) thỏa mãn điều kiện trên, tức là tồn tại \(m\in\mathbb{N}\) sao cho
\(n^2+2002=m^2\Leftrightarrow (m-n)(m+n)=2002\)
Vì \(m-n-(m+n)=-2n\) chẵn nên \(m+n\) và \(m-n\) có cùng tính chẵn lẻ. \((1)\)
Mà \((m-n)(m+n)=2002\) là chẵn , do đó luôn tồn tại thừa số chẵn. Kết hợp với \((1)\) suy ra \(m+n,m-n\) đều chẵn. Do đó mà \(2002\) phải chia hết cho $4$ ( điều này vô lý)
Do đó điều giả sử là sai, tức là không tồn tại \(n\) thỏa mãn đkđb.
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
Ta có \(10\le\overline{ab}\le99\)
\(\Rightarrow201610\le\overline{2016ab}\le201699\)
\(\Rightarrow448^2< \overline{2016ab}\le500^2\)
\(\Rightarrow\overline{2016ab}\le449^2=201601\)
Vậy các chữ số a,b lần lượt là 0;1
Đặt 1980ab = k2 ; k nguyên
ab là số có 2 chữ số => 198000 \(\le\) k2 \(\le\) 198099
=> \(\sqrt{198000}\le k\le\sqrt{198099}\) => 444,9 \(\le\) k \(\le\) 445, 08
=> k = 445
=> 1980ab = 4452 = 198025 => ab = 25
Không phải mà bạn nhìn thiếu số 0