Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Nhận thấy:
a + b.a - b = b.a + a - b
b.a + a.1- b.1
=(b + 1).(a - 1) = 20
Đến đây thì cậu lập bảng nhé!
Lời giải:
a. $A=\left\{30;33;35;50;53;55\right\}$
b. $B=\left\{80;71;62;53;44;35;26;17\right\}$
c. $C=\left\{10;21;32;43;54;65;76;87;98\right\}$
d. $D=\left\{14;25;36;47;58;69\right\}$
Giải:
a) \(A=\left\{30;33;35;50;53;55\right\}\)
b) \(B=\left\{17;26;35;44;53;62;71;80\right\}\)
c) \(C=\left\{10;21;32;43;54;65;76;87;98\right\}\)
d) \(D=\left\{14;25;36;47;58;69\right\}\)
\(abc+2=11×ab\)
\(ab×10+c+2=11×ab\)
\(c+2=ab\)
Vì \(c\)là chữ số mà \(ab\)là số có 2 chữ số nên \(c\)chỉ nhận các giá trị là: 8 và 9
Ta có 2 TH sau:
TH1: \(c=8\)
\(\Rightarrow ab=8+2=10\)
TH2: \(c=9\)
\(\Rightarrow ab=9+2=11\)
Vậy ta có 2 cặp \(\left(a,b,c\right)\)là \(\left(1,0,8\right);\left(1,1,9\right)\)