Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
a) Nếu a 3 và b 3 thì tổng a + b chia hết cho 6; 9; .
b) Nếu a 2 và b 4 thì tổng a + b chia hết cho 4; ; 6.
c) Nếu a 6 và b 9 thì tổng a + b chia hết cho 6; ; 9.
a) Nếu a 3 và b 3 thì tổng a + b chia hết cho 6; 9; .
b) Nếu a 2 và b 4 thì tổng a + b chia hết cho 4; 2; 6.
c) Nếu a 6 và b 9 thì tổng a + b chia hết cho 6; 3; 9.
a) x thuộc {24;36;48}
b) x thuộc {15;30;45}
c) x thuộc {10;20}
d) x thuộc {0;2;4;8;16}
Mình giải câu b nhé!
*5* chia hết cho 2,3,9.
Ta có: Số chia hết cho 2 phải có tận cùng là số 0;2;4;6;8.
=> Ta đem xét số sau trong 5 trường hợp.
Khi: dấu * cuối bằng 0 thì:
5+0=5.
Mà: 5+13=18
18:2;18:9
Nhưng: không thể điền 13=> Bỏ.
+ Khi dấu * thứ 2 bằng 2:
=> 5+2=7
Mà: 18-7=11
Mà: không thể điền 11=> Bỏ.
+ Khi dấu * thứ 2 bằng 4:
=> 5+4=9
Mà: 18-9=9
Mà: 9 không chia hết cho 2 => Loại.
+ Khi dấu * thứ 2 bằng 6:
5+6=11
18-11=7
Mà: 7 không chia hết cho 2. => Loại.
+ Khi dấu * thứ 2 bằng 8:
=> 5+8=13
18-13=5
Mà: 5 không chia hết cho 2=> Loại.
=> Không có giá trị nào thỏa mãn.
Tìm được: b = 9; a = 7
hello