Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(a;b\in Z\)và \(a;b\ne0\)
Mà : \(a\)là \(B_{\left(b\right)}\)thì \(a=b\cdot m\left(m\in Z\right)\)
\(b\)là \(B_{\left(a\right)}\)thì \(b=a\cdot n\left(n\in Z\right)\)
\(\Rightarrow a=b\cdot m=\left(a\cdot n\right)\cdot m=a\cdot\left(m\cdot n\right)\)
\(\Rightarrow m\cdot n=1\)
\(\Rightarrow m=n=1\)hoặc \(m=n=-1\)
+) Nếu \(m=n=1\)thì \(a=b\cdot m=b\cdot1=b\)( Vậy \(a=b\))
+) Nếu \(m=n=-1\)thì \(a=b\cdot m=b\cdot\left(-1\right)=-b\)( Vậy \(a=-b\))
a là bội của b \(\Rightarrow\) a = bk (k \(\in Z\)) (1)
b là bội của a \(\Rightarrow\) b = ah (h \(\in Z\)) (2)
Thay (2) vào (1) ta có:
a = ahk
\(\Rightarrow\) hk = 1
\(\Rightarrow\) \(\orbr{\begin{cases}h=1;k=1\\h=-1;k=-1\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}a=-b\\a=b\end{cases}}\)
ak mjk thiếu bài b, cho mjk bổ sug nha:
b/ Ư(33) = {1; 3; 11}
Để thõa mãn điều kiện y > 5, ta có:
Ư(33) = {11}
Vậy y = 11.
a) Vì 0 < x < 50 nên :
x = {11;22;33;44}
b) Vì y > 5 nên :
y = {11}
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |