K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1

\(2x^2-8x=13-3y^2\)

\(\Leftrightarrow2x^2-8x+8=21-3y^2\)

\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)

Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)

\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)

Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ

\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)

Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)

5 tháng 5 2020

a) x,y nguyên => x+4; y-8 nguyên

=> x+4; y-8\(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

ta có bảng

x+4-6-3-2-11236
x-10-7-6-5-3-2-12
y-8-1-2-3-66321
y76521411109

Vậy (x;y)={(-10;7);(-7;6);(-6;5);(-5;2);(-3;14);(-2;11);(-1;10);(2;9)}

5 tháng 5 2020

b) 2x+xy+3y+6=10

<=> x(2+y)+3(y+2)=10

<=> (y+2)(x+3)=10

x,y nguyên => y+2; x+3 nguyên 

=> y+2; x+3\(\in\)Ư(10)={-10;-5;-2;-1;1;2;5;10}

ta có bảng

x+3-10-5-2-112510
x-13-8-5-4-2-127
y+2-1-2-5-1010521
y-3-4-7-12830-1

a: =>3y=6x-1

=>y=2x-1/3

Vậy: (a)//(e)

b: y=-0,5x-4

c: y=1/2x+3

d: =>2y=6-x

=>2y=(6-x)/2=-0,5x+3

f: =>y=0,5x+1=1/2x+1

Vậy: (c)//(f), (d)//(b)

NV
6 tháng 3 2021

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)