Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)
Ta có: \(\left|x-2007\right|\ge0\forall x\)\(\Rightarrow2\left|x-2007\right|\ge0\forall x\)
\(\Rightarrow2\left|x-2007\right|+3\ge3\forall x\Rightarrow VT\ge3\forall x\left(1\right)\)
Lại có: \(\left|y-2008\right|\ge0\forall y\)\(\Rightarrow\left|y-2008\right|+2\ge2\forall y\)
\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le2\forall y\)
\(\Rightarrow\frac{6}{\left|y-2008\right|+2}\le\frac{6}{2}=3\forall y\Rightarrow VP\le3\forall y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có: \(VT\ge3\ge VP\) xảy ra khi và chỉ khi
\(VT=VP=3\)\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}\)
|x|+2|y|<2,99
=>y < 3 và y > -3
=> y \(\in\){-1;0;1}
Nếu y = -1 thì x = 0.
Nếu y = 0 thì x = {-2;-1;0;1;2}
Nếu y = 1 thì x = 0
2